Prostaglandins Leukot Essent Fatty Acids
January 2016
Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP).
View Article and Find Full Text PDFThe endocannabinoid arachidonoyl ethanolamide (AEA) is a potent inducer of tumor cell apoptosis however its mechanism of cytotoxicity is unclear. A previous report from our laboratory showed that AEA induced cell death in a cyclooxygenase-2 (COX-2)-dependent manner and in this report our data indicate that AEA-induced apoptosis is mediated by COX-2 metabolic products of the J-series. In experiments conducted with JWF2 keratinocytes which over-express COX-2, AEA caused a concentration-regulated increase in J-series prostaglandin production and apoptosis.
View Article and Find Full Text PDFNonmelanoma skin cancer is the most prevalent cancer in the United States with approximately 1.25 million new cases diagnosed each year. Cyclooxygenase-2 (COX-2) expression is commonly elevated in these and other epithelial tumors.
View Article and Find Full Text PDFTopical application of the bioflavonoid 4',5,7-trihydroxyflavone (apigenin) to mouse skin effectively reduces the incidence and size of skin tumors caused by UVB exposure. The ability to act as a chemopreventive compound indicates that apigenin treatment alters the molecular events initiated by UVB exposure; however, the effects of apigenin treatment on UVB-irradiated keratinocytes are not fully understood. In the present study, we have used three models of human keratinocytes to study the effect of apigenin treatment on UVB-induced apoptosis: HaCaT human keratinocyte cells, primary keratinocyte cultures isolated from human neonatal foreskin, and human organotypic keratinocyte cultures.
View Article and Find Full Text PDFApigenin is a bioflavonoid with chemopreventive activity against UV- or chemically-induced mouse skin tumors. To further explore the mechanism of apigenin's chemopreventive activity, we determined whether apigenin inhibited UVB-mediated induction of cyclooxygenase-2 (COX-2) expression in mouse and human keratinocytes. Apigenin suppressed the UVB-induced increase in COX-2 protein and mRNA in mouse and human keratinocyte cell lines.
View Article and Find Full Text PDFCyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene.
View Article and Find Full Text PDFApigenin is a nonmutagenic bioflavonoid that has been shown to be an inhibitor of mouse skin carcinogenesis induced by the two-stage regimen of initiation and promotion with dimethylbenzanthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). These DMBA/TPA-induced squamous cell carcinomas overexpress cyclooxygenase-2 (COX-2). Cyclooxygenases are key enzymes required for prostaglandin (PG) synthesis, converting the arachidonic acid (AA) released by phospholipase A2 into prostaglandins.
View Article and Find Full Text PDFThe Pneumocystis carinii topoisomerase I-encoding gene has been cloned and sequenced, and the expressed enzyme interactions with several classes of topoisomerase I poisons have been characterized. The P. carinii topoisomerase I protein contains 763 amino acids and has a molecular mass of ca.
View Article and Find Full Text PDF