Publications by authors named "Rukhsanda Aziz"

In recent years, the growing concern over the presence of toxic aquatic pollutants has prompted intensive research into effective and environmentally friendly remediation methods. Photocatalysis using semiconductor quantum dots (QDs) has developed as a promising technology for pollutant degradation. Among various QD materials, indium phosphide (InP) and its hybrid with zinc sulfide (ZnS) have gained considerable attention due to their unique optical and photocatalytic properties.

View Article and Find Full Text PDF

Nickel (Ni) is a toxic metal that not only pollutes the environment but also causes harmful impacts on plant growth and human health. Therefore, it is crucial to assess the relationship between the phytoavailability of Ni in soil and its accumulation in edible and non-edible parts of vegetables. A pot experiment was conducted to investigate Ni uptake in three different leafy vegetables, spinach (Spinacia oleracea L.

View Article and Find Full Text PDF

Uchalli Lake is an internationally significant Ramsar site that needs protection for supporting migratory birds. The current study aimed to assess wetland health by examining water and sediments utilizing total and labile heavy metals concentration, pollution indices, ecological risk assessment, water recharge and pollution induction sources through isotope tracer techniques. Al concentration in water was of serious concern as it was 440 times higher than the maximum acceptable concentration of Environmental Quality Standard of the UK for aquatic life in saline waters.

View Article and Find Full Text PDF

Heavy metals (HMs) are extensively found in occupationally exposed miners and industrial workers, which may cause serious health-related problems to the large workforce. In order to evaluate the impact of these toxic pollutants, we have investigated the effect of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) concentration on exposed workers of mining, and woolen textile mill and compared the findings with unexposed individuals. From each category like exposed workers (mining, and woolen mill textile site) and unexposed individuals, 50 blood samples were taken.

View Article and Find Full Text PDF

This research aims to assess the efficiency of the synthesized corncob as a cost-effective and eco-friendly adsorbent for the removal of heavy metals. Therefore, to carry out the intended research project, initially, the corncob was doped with nanoparticles to increase its efficiency or adsorption capacity. The prepared adsorbent was evaluated for the adsorption of cadmium (Cd) and chromium (Cr) from aqueous media with the batch experiment method.

View Article and Find Full Text PDF

In this study analysis of soil, water and plant residue samples is presented to evaluate the contamination levels and possible health risks. Hexachlorocyclohexane (HCH) is a persistent organic pollutant used as a pesticide in agricultural sector for pest control in order to obtain higher productivity. For analysis soil, water and crop residue samples were collected from different agricultural areas of the northern Punjab region of Pakistan.

View Article and Find Full Text PDF

Previous biochar research has primarily focused on agricultural annual cropping systems with very little attention given to highly fragile, complex and diverse natural alpine grassland ecosystems. The present study investigated the effect of biochar on the growth of alpine meadows and soil health. This study was conducted in the Qinghai Tibetan Plateau over a three year period to investigate the effect of three rice husk biochar application rates alone and combination with high and low NPK fertilizer dosages on alpine meadow productivity, soil microbial diversity as well as pH, carbon and nitrogen content at 0-10 cm and 10-20 cm depth.

View Article and Find Full Text PDF

Selenium (Se) is a prerequisite metalloid for humans and animals. But, its essentialness or phytotoxicity is still obscure. Here, we investigated the dual effects of sodium selenite (0, 25, 50 or 100 μM) on the physio-biochemical, anatomical and molecular alterations in different Brassicca napus L.

View Article and Find Full Text PDF

The minimum concentration of cadmium (Cd), by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS) cabbage (40.84%) and calcareous soil (CS) cabbage (21.

View Article and Find Full Text PDF

Cadmium (Cd) enters the food chain from polluted soils via contaminated cereals and vegetables; therefore, an understanding of Cd bioaccessibility, bioavailability, and toxicity in humans through rice grain is needed. This study assessed the Cd bioaccessibility, bioavailability, and toxicity to humans from rice grown on Cd-contaminated soils using an in vitro digestion method combined with a Caco-2/HL-7702 cell model. Cadmium bioaccessibility (18.

View Article and Find Full Text PDF

Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.

View Article and Find Full Text PDF

Cadmium (Cd) is a widespread environmental toxic contaminant, which causes serious health-related problems. In this study, human intestinal cell line (Caco-2 cells) and normal human liver cell line (HL-7702 cells) were used to investigate the toxicity and bioavailability of Cd to both cell lines and to validate these cell lines as in vitro models for studying Cd accumulation and toxicity in human intestine and liver. Results showed that Cd uptake by both cell lines increased in a dose-dependent manner and its uptake by Caco-2 cells (720.

View Article and Find Full Text PDF

Food chain contamination by cadmium (Cd) is globally a serious health concern resulting in chronic abnormalities. Rice is a major staple food of the majority world population, therefore, it is imperative to understand the relationship between the bioavailability of Cd in soils and its accumulation in rice grain. Objectives of this study were to establish environment quality standards for seven different textured soils based on human dietary toxicity, total Cd content in soils and bioavailable portion of Cd in soil.

View Article and Find Full Text PDF

A pot culture experiment was carried out to investigate the accumulation properties of mercury (Hg) in rice grain and cabbage grown in seven soil types (Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg (CK, 0.25, 0.50, 1.

View Article and Find Full Text PDF