Publications by authors named "Ruka Setoguchi"

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments.

View Article and Find Full Text PDF

Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology.

View Article and Find Full Text PDF

Human CCR7(low)CD45RA(high) effector memory CD8(+) T cells (terminally differentiated TEMRA) are reportedly a functionally compromised population with characteristics of cellular senescence when examined ex vivo Although their frequencies are increased in elderly subjects in association with declined immune competence, however, it remains unclear whether their impaired functions can be reversed so that they contribute to immune responses in vivo Here, I show that, in contrast to TCR stimulation, stimulation of TEMRA with IL-15 induced a unique transcriptional signature, promoted IFN-γ production and cell cycle entry, and reduced chemotaxis toward sphingosine-1-phosphate (S1P). TEMRA preferentially accumulated in non-lymphoid tissues when transferred into IL-15-treated NOD.SCID.

View Article and Find Full Text PDF

Human CD8(+) T cells are functionally heterogeneous and can be divided into phenotypically and functionally distinct subsets according to CCR7 and CD45RA expression levels. Among these, CCR7(low) CD45RA(low) effector memory CD8(+) T cells (Tem) and CCR7(low) CD45RA(high) CD8(+) T cells, which are designated as Temra and considered to be terminally differentiated cells, are Ag-experienced T cells but show different functionalities. Here, we show that, while Tem proliferate vigorously and produce IFN-γ persistently and robustly, Temra proliferate poorly and lose the ability to produce IFN-γ over time after TCR stimulation.

View Article and Find Full Text PDF

The emerging notion of environment-induced reprogramming of Foxp3(+) regulatory T (Treg) cells into helper T (Th) cells remains controversial. By genetic fate mapping or adoptive transfers, we have identified a minor population of nonregulatory Foxp3(+) T cells exhibiting promiscuous and transient Foxp3 expression, which gave rise to Foxp3(-) ("exFoxp3") Th cells and selectively accumulated in inflammatory cytokine milieus or in lymphopenic environments including those in early ontogeny. In contrast, Treg cells did not undergo reprogramming under those conditions irrespective of their thymic or peripheral origins.

View Article and Find Full Text PDF

In the thymus, the transcription factor ThPOK is essential for the development of the CD4 helper T cell lineage, whereas active repression of ThPOK is critical for the development of the CD8 cytotoxic T cell lineage. ThPOK gene silencing is thought to be irreversible in peripheral CD8 T cells. We noticed that ThPOK repression is readily abrogated upon in vitro TCR stimulation of peripheral CD8 T cells.

View Article and Find Full Text PDF

Mouse CD4+CD8+ double-positive (DP) thymocytes differentiate into CD4+ helper-lineage cells upon expression of the transcription factor Th-POK but commit to the CD8+ cytotoxic lineage in its absence. We report the redirected differentiation of class I-restricted thymocytes into CD4+CD8- helper-like T cells upon loss of Runx transcription factor complexes. A Runx-binding sequence within the Th-POK locus acts as a transcriptional silencer that is essential for Th-POK repression and for development of CD8+ T cells.

View Article and Find Full Text PDF

Motivation: Although a huge amount of mammalian genomic data does become publicly available, there are still hurdles for biologists to overcome before such data can be fully exploited. One of the challenges for gaining biological insight from genomic data has been the inability to cross-reference transcriptomic and proteomic data using a single informational platform. To address this, we constructed an open-access database that enabled us to cross-reference transcriptomic and proteomic data obtained from immune cells.

View Article and Find Full Text PDF

Interferon gamma (IFN gamma) is the hallmark cytokine produced by T helper type 1 (Th1) cells, whereas interleukin (IL)-4 is the hallmark cytokine produced by Th2 cells. Although previous studies have revealed the roles of cytokine signaling and of transcription factors during differentiation of Th1 or Th2 cells, it is unclear how the exclusive expression pattern of each hallmark cytokine is established. The DNaseI hypersensitivity site IV within the mouse Il4 locus plays an important role in the repression of Il4 expression in Th1 cells, and it has been named the Il4 silencer.

View Article and Find Full Text PDF

Naturally arising CD25+ CD4+ regulatory T (Treg) cells, most of which are produced by the normal thymus as a functionally mature T-cell subpopulation, play key roles in the maintenance of immunologic self-tolerance and negative control of a variety of physiological and pathological immune responses. Natural Tregs specifically express Foxp3, a transcription factor that plays a critical role in their development and function. Complete depletion of Foxp3-expressing natural Tregs, whether they are CD25+ or CD25-, activates even weak or rare self-reactive T-cell clones, inducing severe and widespread autoimmune/inflammatory diseases.

View Article and Find Full Text PDF

Interleukin (IL)-2 plays a crucial role in the maintenance of natural immunologic self-tolerance. Neutralization of circulating IL-2 by anti-IL-2 monoclonal antibody for a limited period elicits autoimmune gastritis in BALB/c mice. Similar treatment of diabetes-prone nonobese diabetic mice triggers early onset of diabetes and produces a wide spectrum of T cell-mediated autoimmune diseases, including gastritis, thyroiditis, sialadenitis, and notably, severe neuropathy.

View Article and Find Full Text PDF

Naturally arising CD25(+)CD4(+) regulatory T (T(R)) cells can be exploited to establish immunologic tolerance to non-self antigens. In vivo exposure of CD25(+)CD4(+) T cells from normal naive mice to alloantigen in a T cell-deficient environment elicited spontaneous expansion of alloantigen-specific CD25(+)CD4(+) T(R) cells, which suppressed allograft rejection mediated by subsequently transferred naive T cells, leading to long-term graft tolerance. The expanded T(R) cells, which became CD25(low) in the absence of other T cells, stably sustained suppressive activity, maintained expression levels of other T(R) cell-associated molecules, including Foxp3, CTLA-4 and GITR, and could adoptively transfer tolerance to normal mice.

View Article and Find Full Text PDF

The effects of tacrolimus on insulin-dependent diabetes mellitus (IDDM) induced by the D-variant of encephalomyocarditis virus (D-EMCV) have been investigated. Male BALB/c mice were treated with tacrolimus before viral inoculation, and then were inoculated with 10 plaque forming units (PFU) of DEMCV. The mice continued to be treated with tacrolimus until the animals were sacrificed.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha) is a cytokine considered to play a key role in beta-cell destruction in insulin-dependent diabetes mellitus (IDDM). Serum thymic factor (Facteur thymique serique; FTS) is a nonapeptide thymus hormone known to inhibit IDDM in a mouse model. In this study, the effect of TNF-alpha on the murine pancreatic beta-cell line MIN6 was examined.

View Article and Find Full Text PDF