The effect of incorporating different types of carbon nanotubes into composite films of a redox polymer (FcMe-C-LPEI) and glucose oxidase (GOX) was investigated. The composite films were constructed by first forming a high-surface area network film of either single-walled carbon nanotubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) on a glassy carbon electrode (GCE) by solution casting of a suspension of Triton-X-100 dispersed SWNTs. Next a glucose responsive redox hydrogel was formed on top of the nanotube-modified electrode by cross-linking FcMe-C-LPEI with glucose oxidase via ethylene glycol diglycidyl ether (EGDGE).
View Article and Find Full Text PDFSuccessful commercialization of wearable diagnostic sensors necessitates stability in detection of analytes over prolonged and continuous exposure to sweat. Challenges are primarily in ensuring target disease specific small analytes (i.e.
View Article and Find Full Text PDFAn ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e.
View Article and Find Full Text PDF