Publications by authors named "Rujiang Ao"

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

Real-time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe-integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of ⋅OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into β-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition.

View Article and Find Full Text PDF

Ferrous iron (Fe ) has more potent hydroxyl radical (⋅OH)-generating ability than other Fenton-type metal ions, making Fe-based nanomaterials attractive for chemodynamic therapy (CDT). However, because Fe can be converted by ferritin heavy chain (FHC) to nontoxic ferric form and then sequestered in ferritin, therapeutic outcomes of Fe-mediated CDT agents are still far from satisfactory. Here we report the synthesis of siRNA-embedded Fe nanoparticles (Fe -siRNA NPs) for self-reinforcing CDT via FHC downregulation.

View Article and Find Full Text PDF

Lipid peroxidation (LPO) is one of the most damaging processes in chemodynamic therapy (CDT). Although it is well known that polyunsaturated fatty acids (PUFAs) are much more susceptible than saturated or monounsaturated ones to LPO, there is no study exploring the effect of cell membrane unsaturation degree on CDT. Here, we report a self-reinforcing CDT agent (denoted as OA@Fe-SAC@EM NPs), consisting of oleanolic acid (OA)-loaded iron single-atom catalyst (Fe-SAC)-embedded hollow carbon nanospheres encapsulated by an erythrocyte membrane (EM), which promotes LPO to improve chemodynamic efficacy via modulating the degree of membrane unsaturation.

View Article and Find Full Text PDF

As a rising generation of nanozymes, single atom enzymes show significant promise for cancer therapy, due to their maximum atom utilization efficiency and well-defined electronic structures. However, it remains a tremendous challenge to precisely produce a heteroatom-doped single atom enzyme with an expected coordination environment. Herein, we develop an anion exchange strategy for precisely controlled production of an edge-rich sulfur (S)- and nitrogen (N)-decorated nickel single atom enzyme (S-N/Ni PSAE).

View Article and Find Full Text PDF

Singlet oxygen ( O ) has a potent anticancer effect, but photosensitized generation of O is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of O -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO -catalyzed generation of O from H O and protects MoO from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH.

View Article and Find Full Text PDF