The development of efficient electrode materials is a cutting-edge approach for high-performance energy storage devices. Herein, an effective chemical redox approach is reported for tuning the crystalline and electronic structures of bimetallic cobalt/nickel-organic frameworks (Co-Ni MOFs) to boost faradaic redox reaction for high energy density. The as-obtained cobalt/nickel boride/sulfide exhibits a high specific capacitance (1281 F g at 1 A g ), remarkable rate performance (802.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Metal-organic frameworks (MOFs) hold promising potential in energy storage but are limited by poor conductivity. In this work, a metal-organic framework/polypyrrole hybrid is constructed by a facile one-pot electrodeposition method in the presence of dopamine. An all-solid-state fabric supercapacitor based on this hybrid demonstrates excellent electrochemical energy-storage performance, which achieves a specific capacitance of 10 mF cm (206 mF cm), a power density of 132 μW cm (2102 μW cm), and an energy density of 0.
View Article and Find Full Text PDFThe original version of this Article contained an error in Fig. 3. The scale bars in Figs 3c and 3d were incorrectly labelled as 50 μA.
View Article and Find Full Text PDFNanochannels with functional elements have shown promise for DNA sequencing, single-molecule sensing, and ion gating. Ionic current measurement is currently a benchmark, but is focused solely on the contribution from nanochannels' inner-wall functional elements (NIWFE); the attributes of functional elements at nanochannels' outer surface (NOSFE) are nearly ignored, and remain elusive. Here we show that the role of NOSFE and NIWFE for ion gating can be distinguished by constructing DNA architectures using dual-current readout.
View Article and Find Full Text PDFThe "Plug and Play" template can be individually or successively grafted by dual-responsive molecules on the α-CD modified channels by host-guest interactions and can be peeled off by UV irradiation. The artificial channels present six kinds of responses cycling among four states responding to three environment stimuli, as light, pH, and temperature.
View Article and Find Full Text PDFThe sensitivity of detection based on biofunctionalized nanopores is limited since the target-to-signal ratio is 1 : 1. Isothermal amplification is a promising amplification strategy at constant temperature due to its easy operation, quick results, PCR-like sensitivity, low cost and energy efficiency. In the present work, the isothermally amplified detection of Zn(2+) is achieved by using a DNA supersandwich structure and Zn(2+)-requiring DNAzymes.
View Article and Find Full Text PDFIn recent years, artificial stimuli-responsive bioinspired nanopores have attracted a lot of attention due to their unique property of confined spaces and flexibility in terms of shapes and sizes. Most of the nanopore systems demonstrated their transmembrane properties and applications in target detections. However, almost all of the nanopores can be used only once due to either the irreversible reactions between targets and probes or the plugged nanopores not easily being unplugged again.
View Article and Find Full Text PDFAlmost all of the important functions of DNA are realized by proteins which interact with specific DNA, which actually happens in a limited space. However, most of the studies about the protein-DNA binding are in an unconfined space. Here, we propose a new method, nanopore-based DNA-probe sequence-evolution (NDPSE), which includes up to 6 different DNA-probe systems successively designed in a nanoscale confined space which unveil the more realistic characteristics of protein-DNA binding phenomena.
View Article and Find Full Text PDF