A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-AlO coating online construction during the β-iPP cavitation process. The middle layer composed of nano-AlO, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-AlO coating hold optimized dimensional stability below the meltdown temperature.
View Article and Find Full Text PDFThe application of a reverse osmosis (RO) membrane is greatly restricted on account of a trade-off between water flux and salt rejection, as well as poor anti-fouling properties. In order to improve the surface hydrophilicity of RO membranes, l-lysine (Lys) was grafted onto polyamide selective layers with the premise of maintaining the original surface morphology and thickness, which were verified through scanning electron microscopy and atomic force microscopy analysis. X-ray photoelectron spectroscopic measurements confirmed the occurrence of the reaction.
View Article and Find Full Text PDFTo prepare polyamide thin-film composite reverse osmosis (PA-TFC-RO) membranes with high performance, l-arginine (Arg) was used as an additive in -phenylenediamine (MPD) aqueous solution. Arg with active amine groups can react with 1,3,5-benzenetricarboxylic chloride (TMC) to be incorporated into the polyamide selective layer during interfacial polymerization. X-ray photoelectron spectroscopy verified the successful introduction of Arg into the polyamide selective layer.
View Article and Find Full Text PDFIn this paper, the influence of ordered structure effects (OSE) on crystallization behaviors of β-nucleated isotactic polypropylene/graphene oxide (β-iPP/GO) composites with different thermal histories, which crystallized at a slow cooling rate (called SLOW), fast cooling rate (called FAST) and medium cooling rate (called MED), respectively, was studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The ordered structure status of three samples before crystallization measurement was controlled by tuning the fusion temperature and melting time . The results showed that for all samples, OSE would occur in an appropriate region (Region II).
View Article and Find Full Text PDFInspired by the special pH value-responsive and strong hydrophilic ability of poly(2-ethyl-2-oxazoline) (PEOX), in this study, asymmetric polysulfone (PSf) and PSf/PEOX ultrafiltration membranes were prepared by a phase separation method, wherein different dosages of PEOX (0-3 wt%) were incorporated into the PSf casting solution as polymeric additives. The effects of PEOX dosages on the phase separation kinetics, chemical properties, morphology, hydrophilicity, porosity and performances such as pure water flux (PWF), Bull Serum Albumin (BSA) rejection, pH value responsiveness and anti-fouling property were investigated in detail. The hydrophilicity, pure water flux, BSA rejection and anti-fouling property were improved significantly after the incorporation of PEOX.
View Article and Find Full Text PDFPolyamide thin film composite (TFC) reverse osmosis (RO) membranes were prepared in this study. l-Lysine is used as a type of aqueous additive during interfacial polymerization. As a result, the pure water flux (PWF) of the resulting membranes increased by around 18% and their salt rejection improved from 98.
View Article and Find Full Text PDF