In this paper we explore the application of low-loss multimode anti-resonant hollow-core fiber (MM-AR-HCF) in the delivery of nanosecond laser pulses at 1 µm wavelength. MM-AR-HCF with large core offers a rich content of low-loss higher-order modes which plays a key role in the efficient coupling and transmission of high-power laser of low beam quality. In the experiment, laser pulses of an average pulse energy of 21.
View Article and Find Full Text PDFObject-space model optimization (OSMO) has been proven to be a simple and high-accuracy approach for additive manufacturing of tomographic reconstructions compared with other approaches. In this paper, an improved OSMO algorithm is proposed in the context of OSMO. In addition to the two model optimization steps in each iteration of OSMO, another two steps are introduced: one step enhances the target regions' in-part edges of the intermediate model, and the other step weakens the target regions' out-of-part edges of the intermediate model to further improve the reconstruction accuracy of the target boundary.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2023
Two-dimensional (2D) materials own unique band structures and excellent optoelectronic properties and have attracted wide attention in photonics. Tin disulfide (SnS), a member of group IV-VI transition metal dichalcogenides (TMDs), possesses good environmental optimization, oxidation resistance, and thermal stability, making it more competitive in application. By using the intensity-dependent transmission experiment, the saturable absorption properties of the SnS nanosheet nearly at 3 μm waveband were characterized by a high modulation depth of 32.
View Article and Find Full Text PDFSemiconductor lasers have developed rapidly with the steady growth of the global laser market. The use of semiconductor laser diodes is currently considered to be the most advanced option for achieving the optimal combination of efficiency, energy consumption, and cost parameters of high-power solid-state and fiber lasers. In this work, an approach for optical mode engineering in planar waveguides is investigated.
View Article and Find Full Text PDFTraditional planar diffractive optical elements (DOEs) are challenged in imaging systems due to diffraction efficiency and chromatic dispersion. In this paper, we have designed a microfluidic diffractive optical element (MFDOE), which is processed by digital micromirror device (DMD) maskless lithography (DMDML) assisted femtosecond laser direct writing (FsLDW). MFDOE is a combination of photoresist-based multi-layer harmonic diffraction surface and liquid, realizing diffraction efficiency of more than 90% in the visible band.
View Article and Find Full Text PDF