Publications by authors named "Ruiz-Lozano P"

The regenerative capacity of the adult mammalian heart remains a formidable challenge in biological research. Despite extensive investigations into the loss of regenerative potential during evolution and development, unlocking the mechanisms governing cardiomyocyte proliferation remains elusive. Two recent groundbreaking studies have provided fresh perspectives on mitochondrial-to-nuclear communication, shedding light on novel factors that regulate cardiomyocyte proliferation.

View Article and Find Full Text PDF

Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system.

View Article and Find Full Text PDF

NOTCH plays a pivotal role during normal development and in congenital disorders and cancer. γ-secretase inhibitors are commonly used to probe NOTCH function, but also block processing of numerous other proteins. We discovered a new class of small molecule inhibitor that disrupts the interaction between NOTCH and RBPJ, which is the main transcriptional effector of NOTCH signaling.

View Article and Find Full Text PDF
Article Synopsis
  • The G protein-coupled receptor APJ is identified as a potential treatment target for heart failure, particularly due to its role in stretch-induced cardiac remodeling.
  • Mice with APJ deleted in the myocardium showed protection against heart function decline after stress, emphasizing the receptor's involvement in regulating cardiac contractility.
  • The study highlights that apelin, a peptide interacting with APJ, can mitigate the detrimental effects of stretch-induced hypertrophy, making it a promising therapeutic option to enhance heart function while preventing heart failure progression.
View Article and Find Full Text PDF

Understanding the mechanisms that control human cardiomyocyte proliferation might be applicable to regenerative medicine. We screened a whole genome collection of human miRNAs, identifying 96 to be capable of increasing proliferation (DNA synthesis and cytokinesis) of human iPSC-derived cardiomyocytes. Chemical screening and computational approaches indicated that most of these miRNAs (67) target different components of the Hippo pathway and that their activity depends on the nuclear translocation of the Hippo transcriptional effector YAP.

View Article and Find Full Text PDF

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1.

View Article and Find Full Text PDF

Aims: Reactive oxygen species (ROS) are generated in the ischaemic myocardium especially during early reperfusion and affect myocardial function and viability. Monoterpenes have been proposed to play beneficial roles in diverse physiological systems; however, the mechanisms of action remain largely unknown. This study aims to assess the effect of monoterpene geraniol (GOH) on neonatal rat ventricular cardiomyocytes (NRVCs) subjected to oxidative stress.

View Article and Find Full Text PDF

Tissue engineering utilizes porous scaffolds as template to guide the new tissue growth. Clinical application of scaffolding biomaterials is hindered by implant-associated infection and impaired in vivo visibility of construct in biomedical imaging modalities. We recently demonstrated the use of a bioengineered type I collagen patch to repair damaged myocardium.

View Article and Find Full Text PDF

Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.

View Article and Find Full Text PDF

Increasing angiogenesis has long been considered a therapeutic target for improving heart function after injury such as acute myocardial infarction. However, gene, protein and cell therapies to increase microvascularization have not been successful, most likely because the studies failed to achieve regulated and concerted expression of pro-angiogenic and angiostatic factors needed to produce functional microvasculature. Here, we report that the transcription factor RBPJ is a homoeostatic repressor of multiple pro-angiogenic and angiostatic factor genes in cardiomyocytes.

View Article and Find Full Text PDF

The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression.

View Article and Find Full Text PDF

Aim: Age and injury cause structural and functional changes in coronary artery smooth muscle cells (caSMCs) that influence the pathogenesis of coronary artery disease. Although paracrine signalling is widely believed to drive phenotypic changes in caSMCs, here we show that developmental origin within the fetal epicardium can have a profound effect as well.

Methods And Results: Fluorescent dye and transgene pulse-labelling techniques in mice revealed that the majority of caSMCs are derived from Wt1(+), Gata5-Cre(+) cells that migrate before E12.

View Article and Find Full Text PDF

Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure.

View Article and Find Full Text PDF

Considering the impaired regenerative capacity of adult mammalian heart tissue, cardiovascular tissue engineering aims to create functional substitutes that can restore the structure and function of the damaged cardiac tissue. The success of cardiac regenerative therapies has been limited mainly due to poor control on the structure and properties of the tissue substitute, lack of vascularization, and immunogenicity. In this study we introduce a new approach to rapidly engineer dense biomimetic scaffolds consisting of type I collagen, to protect the heart against severe ischemic injury.

View Article and Find Full Text PDF

Due to the limited self-renewal capacity of cardiomyocytes, the mammalian heart exhibits impaired regeneration and insufficient ability to restore heart function after injury. Cardiovascular tissue engineering is currently considered as a promising alternative therapy to restore the structure and function of the failing heart. Recent evidence suggests that the epicardium may play critical roles in regulation of myocardial development and regeneration.

View Article and Find Full Text PDF

Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction.

View Article and Find Full Text PDF

Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention.

View Article and Find Full Text PDF

Anatomical congruence of peripheral nerves and blood vessels is well recognized in a variety of tissues. Their physical proximity and similar branching patterns suggest that the development of these networks might be a coordinated process. Here we show that large diameter coronary veins serve as an intermediate template for distal sympathetic axon extension in the subepicardial layer of the dorsal ventricular wall of the developing mouse heart.

View Article and Find Full Text PDF

Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ.

View Article and Find Full Text PDF

Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs.

View Article and Find Full Text PDF

The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knockout mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β(1)-adrenergic receptors in cardiac plasma membranes.

View Article and Find Full Text PDF