Background And Purpose: MAPKs are among the most relevant signalling pathways involved in coordinating cell responses to different stimuli. This group includes p38MAPKs, constituted by 4 different proteins with a high sequence homology: MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ) and MAPK13 (p38δ). Despite their high similarity, each member shows unique expression patterns and even exclusive functions.
View Article and Find Full Text PDFSarcomas constitute a heterogeneous group of rare and difficult-to-treat tumors that can affect people of all ages, representing one of the most common forms of cancer in childhood and adolescence. Little is known about the molecular entities involved in sarcomagenesis. Therefore, the identification of processes that lead to the development of the disease may uncover novel therapeutic opportunities.
View Article and Find Full Text PDFSorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF.
View Article and Find Full Text PDFBackground And Purpose: Gemcitabine is an antitumour agent currently used in the treatment of several types of cancer with known properties as a radiosensitizer. p38MAPK signalling pathway has been shown to be a major determinant in the cellular response to gemcitabine in different experimental models. However, the molecular mechanism implicated in gemcitabine-associated radiosensitivity remains unknown.
View Article and Find Full Text PDFThe p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer.
View Article and Find Full Text PDFTargeting cell cycle has become one of the major challenges in cancer therapy, being Palbociclib, a CDK4/6 inhibitor, an excellent example. Recently, it has been reported that Palbociclib could be a novel radiosensitizer agent. In an attempt to clarify the molecular basis of this effect we have used cell lines from colorectal (HT29, HCT116) lung (A549, H1299) and breast cancer (MCF-7).
View Article and Find Full Text PDFPurpose: Autophagy has lately emerged as an important biological process with implications in several hematological pathologies. Recently, a growing body of evidence supports a putative role of autophagy in chronic lymphocytic leukemia; however, no definitive clue has been established so far. To elucidate this issue, we have developed a pilot study to measure autophagic flux in peripheral blood mononuclear cells from chronic lymphocytic leukemia patients, and explored its correlation with classical clinical/analytical parameters.
View Article and Find Full Text PDFObjectives: To fully clarify the role of Mitogen Activated Protein Kinase in the therapeutic response to Sorafenib in Renal Cell Carcinoma as well as the cell death mechanism associated to this kinase inhibitor, we have evaluated the implication of several Mitogen Activated Protein Kinases in Renal Cell Carcinoma-derived cell lines.
Materials And Methods: An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA.
With the aim of studying delta-like protein 1 (DLK1) with respect to the relationship between adipocyte leptin and adenohypophyseal hormones, we carried out an immunohistochemical study analysing the presence of receptors for these hormones in the pituitary and adipose cells of male wild-type (WT) mice (Dlk1 ) compared to knockout (KO) mice (Dlk1 ). The mRNA expression of these molecules was also determined using the reverse transcriptase-polymerase chain reaction. The results obtained showed that, in WT adipose cells, all of the adenohypophyseal hormone receptors were present, with a higher mRNA expression for growth hormone (GH) receptor and thyroid-stimulating hormone (TSH) receptor.
View Article and Find Full Text PDFThe E1a gene from adenovirus has become a major tool in cancer research. Since the discovery of E1a, it has been proposed to be an oncogene, becoming a key element in the model of cooperation between oncogenes. However, E1a's in vivo behaviour is consistent with a tumour suppressor gene, due to the block/delay observed in different xenograft models.
View Article and Find Full Text PDFThe involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ.
View Article and Find Full Text PDFDLK1 (PREF1, pG2, or FA1) is a transmembrane and secreted protein containing epidermal growth factor-like repeats. Dlk1 expression is abundant in many tissues during embryonic and fetal development and is believed to play an important role in the regulation of tissue differentiation and fetal growth. After birth, Dlk1 expression is abolished in most tissues but is possibly reactivated to regulate stem cell activation and responses to injury.
View Article and Find Full Text PDFDelta-like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR-induced expression of key pro-inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1-deficient mice and Raw 264.
View Article and Find Full Text PDFResistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy.
View Article and Find Full Text PDFAims: The epidermal growth factor-like protein Delta-like 1 (DLK1) regulates multiple differentiation processes. It resembles NOTCH ligands structurally and is considered a non-canonical ligand. Given the crucial role of the NOTCH pathway in angiogenesis, we hypothesized that DLK1 could regulate angiogenesis by interfering with NOTCH.
View Article and Find Full Text PDFTo better understand the role of the non-canonical Notch ligand delta-like protein 1 (DLK1), in hormone-producing cells, we studied the cell distribution and subcellular localisation of DLK1 in the pituitary of male adult 129/SvJ mice, and analysed the variations in the hormone-producing cells associated with the lack of this gene in Dlk1 knockout mice. The results obtained showed the presence of DLK1-immunoreactive (ir) cells in all hormone-producing cells of the anterior pituitary. Immunoelectron microscopy showed DLK1-ir in the rough endoplasmic reticulum and inside secretory vesicles, suggesting that DLK1 is released together with pituitary hormones.
View Article and Find Full Text PDFThe protein DLK2, highly homologous to DLK1, belongs to the EGF-like family of membrane proteins, which includes NOTCH receptors and their DSL-ligands. The molecular mechanisms by which DLK proteins regulate cell differentiation and proliferation processes are not fully established yet. In previous reports, we demonstrated that DLK1 interacts with itself and with specific EGF-like repeats of the NOTCH1 extracellular region involved in the binding to NOTCH1 canonical ligands.
View Article and Find Full Text PDFDelta-like 1/fetal antigen 1 (DLK1/FA-1) is a transmembrane protein belonging to the Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific Dlk1-overexpressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD).
View Article and Find Full Text PDFMacrophages present different Notch receptors and ligands on their surface. Following macrophage activation by LPS or other TLR ligands, Notch1 expression is upregulated. We report here that Notch signaling increases both basal and LPS-induced NF-kappaB activation, favoring the expression of genes implicated in the inflammatory response, such as the cytokines TNF-alpha and IL-6, or enzymes, such as iNOS.
View Article and Find Full Text PDFThe Dlk1 (delta-like-1) gene is a member of the epidermal growth factor (EGF)-like homeotic gene family. It influences cell-cell interactions between stromal cells and pro-B cells in vitro. To define the in vivo role of the dlk protein in B cell development, we established a Dlk1-/- mouse model.
View Article and Find Full Text PDF