Background: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue.
Methods: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins.
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1-4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice.
View Article and Find Full Text PDFAm J Pathol
November 2010
Herpes simplex virus 1 (HSV-1) is a neurotropic DNA virus that is responsible for several clinical manifestations in humans, including encephalitis. HSV-1 triggers toll-like receptors (TLRs), which elicit cytokine production. Viral multiplication and cytokine expression in C57BL/6 wild-type (WT) mice infected with HSV-1 were evaluated.
View Article and Find Full Text PDF