Flexible strain sensors based on self-adhesive, high-tensile, super-sensitive conductive hydrogels have promising application in human-computer interaction and motion monitoring. Traditional strain sensors have difficulty in balancing mechanical strength, detection function, and sensitivity, which brings challenges to their practical applications. In this work, the double network hydrogel composed of polyacrylamide (PAM) and sodium alginate (SA) was prepared, and MXene and sucrose were used as conductive materials and network reinforcing materials, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
The rapid development of wearable electronic devices and virtual reality technology has revived interest in flexible sensing and control devices. Here, we report an ionic hydrogel (PTSM) prepared from polypropylene amine (PAM), tannic acid (TA), sodium alginate (SA), and MXene. Based on the multiple weak H-bonds, this hydrogel exhibits excellent stretchability (strain >4600%), adhesion, and self-healing.
View Article and Find Full Text PDF