Publications by authors named "Ruiying Huang"

Background & Aims: Previous studies have reported an inconsistent relationship between overactive bladder (OAB) and the consumption of tea, coffee, and caffeine. Our study aims to determine these associations in a large and nationally representative adult sample.

Methods: This cross-sectional study included 15,379 participants from the 2005-2018 US National Health and Nutrition Examination Survey (NHANES) database.

View Article and Find Full Text PDF

Myeloproliferative neoplasm (MPN) usually has an adverse prognosis, progressing to acute leukemia or splanchnic vein thromboses (SVTs). Therefore, early diagnosis and intervention are significantly important. Clinically, the burden of JAK2V617F is a vital diagnostic basis, which can be detected during the early stage of MPN.

View Article and Find Full Text PDF

Gliomas are the most aggressive and common type of malignant brain tumor, with limited treatment options and a dismal prognosis. Angiogenesis, a hallmarks of cancer, is one of two critical events in the progression of gliomas. Accumulating evidence has demonstrated that in glioma dysregulated molecules like long noncoding RNAs (lncRNAs), are closely linked to tumorigenesis and prognosis.

View Article and Find Full Text PDF

Atherosclerosis and related cardiovascular diseases pose severe threats to human health worldwide. There is evidence to suggest that at least 50% of foam cells in atheromas are derived from vascular smooth muscle cells (VSMCs); the first step in this process involves migration to human atherosclerotic lesions. Long non‑coding RNAs (lncRNAs) have been found to play significant roles in diverse biological processes.

View Article and Find Full Text PDF

The trichothiodystrophy group A protein (TTDA) functions in nucleotide excision repair and basal transcription. TTDA plays a role in cancers and serves as a prognostic and predictive factor in high-grade serous ovarian cancer; however, its role in human glioma remains unknown. Here, we found that TTDA was overexpressed in glioma tissues.

View Article and Find Full Text PDF

Drug-loaded implants have attracted considerable attention in cancer treatment due to their precise delivery of drugs into cancer tissues. Contrary to injected drug delivery, the application of drug-loaded implants remains underutilized given the requirement for a surgical operation. Nevertheless, drug-loaded implants have several advantages, including a reduction in frequency of drug administration, minimal systemic toxicity, and increased delivery efficacy.

View Article and Find Full Text PDF

Purpose: Combination chemotherapy is gradually receiving more attention because of its potential synergistic effect and reduced drug doses in clinical application. However, how to precisely control drug release dose and time using vehicles remains a challenge. This work developed an efficient drug delivery system to combat breast cancer, which can enhance drug effects despite reducing its concentration.

View Article and Find Full Text PDF

Injuries to the skin are common in daily life, and a certain type or size of defect is not easily restored using conventional dressings or naturally. The repair of these defects requires restoration of function in regenerated tissues. In this study, a tissue engineered skin was designed and fabricated using a bio-3D printing system.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) have been identified as regulators of a number of developmental and tumorigenic processes. However, the functions of most lncRNAs in glioma remain unknown and the mechanisms governing the proliferation of tumor cells remain poorly defined.

Methods: Both in vitro and in vivo assays were performed to investigate the roles of lncRNAs in the pathophysiology of gliomas.

View Article and Find Full Text PDF

Background: Skeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells.

Methods: Poly lactic-co-glycolic acid (PLGA) 3D printed scaffolds, which simulate the highly complex structure of extracellular matrix (ECM), were fabricated by E-jet 3D printing in this study. The scaffolds were used as platforms, providing environment that aids in growth, differentiation and other properties of C2C12 myoblast cells.

View Article and Find Full Text PDF

The development of accurate and predictive in vitro experimental models of human tumors consistent with in vivo tumor microenvironments has garnered great attention in modern cancer research. 3D scaffolds are fabricated in this study by E-jet 3D printing with the aim of replicating the functionalities of tumor microenvironments in vitro which could be applicable as screening platforms for novel therapeutic strategies. Tumor protein 53 (p53) plays an important role in penetration and migration in 2D cell culture.

View Article and Find Full Text PDF

Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying.

View Article and Find Full Text PDF

Magnetic hyperthermia has been rapidly developed as a potential cancer treatment in recent years. Artificially induced hyperthermia close to a tumor can raise the temperature to 45°C causing tumor cell death. Herein, we introduce a novel method for rapid preparation of anti-cancer magnetocaloric PCL/Fe O mats capable of high-performance hyperthermia using E-jet 3D printing technology.

View Article and Find Full Text PDF

The ideal 3D scaffold for biological applications has not yet been designed. Our aim is to better match the scaffold performance through fine control of the fabrication process. Here, we applied electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid) (PLGA) solution to construct scaffolds for tissue engineering applications.

View Article and Find Full Text PDF