Front Endocrinol (Lausanne)
April 2023
Background And Objectives: Obesity is a global health problem with few pharmacologic options. Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue that induces weight loss. Yet, the role of semaglutide in adipose tissue has not yet been examined.
View Article and Find Full Text PDFBased on the 4D label-free phosphoproteomic technique, we examined the differences in cognitive function and hippocampal phosphorylated protein expression in high-fat diet-induced obese mice after the intervention of semaglutide and empagliflozin, as well as the effects of both on protein activity and function in obese mice's hippocampal tissues and the signaling pathways involved. Thirty-two C57BL/6JC male mice were assigned to two groups randomly: A control group (group C, 10% of energy is from fat, n = 8) and a high-fat diet group (group H, 60% of energy is from fat, n = 24). The high-fat diet-induced obese mice were screened after 12 weeks of feeding based on the criterion that the bodyweight of mice in fat rich diet group was greater than or equal to 20% of the average body weight of the mice in the blank control group.
View Article and Find Full Text PDFDrug Des Devel Ther
November 2022
Purpose: Semaglutide, a new long-acting glucagon-like peptide-1 analogue, has shown benefits for renal diseases, but its direct role on kidney metabolism under obesity remains unclear. The study aims to elucidate the protective effect and metabolic modulation mechanism of semaglutide on obesity-related kidney injury.
Methods: Male C57BL/6J mice were divided into control and obesity groups.
Nutr Metab (Lond)
October 2022
Using proteomic techniques the impact of the sodium-glucose transport protein 2 inhibitor empagliflozin on cardiac protein expression in a mouse model was assessed under normal and high-fat diet (HFD) conditions. We examined the effect of obesity on serological markers and heart function in obese mice treated with or without empagliflozin and used proteomic techniques to investigate alterations in cardiac protein expression. Using bioinformatic techniques, data were screened for differentially expressed proteins (DEPs) implicated in the putative mechanism of empagliflozin's cardioprotective effects.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2022
Non-cardiomyocytes (nonCMs) play an important part in cardiac fibrosis pathophysiology, but the underlying molecular pathways are unknown. Semaglutide has cardioprotective properties, but it is still unclear whether it helps with cardiac fibrosis and what the processes are. The goal of this study is to use single cell transcriptomics approaches to investigate the molecular mechanism of semaglutide's cardioprotective action in obese mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2022
With an increasing prevalence of obesity related kidney disease, exploring the mechanisms of therapeutic method is of critical importance. Empagliflozin is a new antidiabetic agent with broad clinical application prospect in cardiovascular and renal diseases. However, a metabonomics-based renoprotective mechanism of empagliflozin in obesity remains unclear.
View Article and Find Full Text PDFBackground: This study is aimed at exploring the key genes and the possible mechanism of heart damage caused by obesity.
Methods: We analyzed the GSE98226 dataset. Firstly, differentially expressed genes (DEGs) were identified in heart tissues of obese and normal mice.
Biochem Biophys Res Commun
August 2022
Obesity is a risk factor for cardiovascular disease, leading to ventricular dysfunction and cardiac fibrosis, in which non-cardiomyocytes (nonCMs) play an important role. Early detection and treatment of heart illness may help to limit its progression. We screened for key markers of obesity-induced cardiac fibrosis using single-cell transcriptomics techniques.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments.
View Article and Find Full Text PDF