Angew Chem Int Ed Engl
November 2024
We report here an electrocatalyst that exhibits superior performance in the electrooxidation of ethanol. The reactive centers of the catalyst have a nest-type configuration with outer Zn-NC nest covering inner PtZn intermetallic compound nanoparticles loaded on carbon support (ZnNC⊂PtZn/C). The high-energy stepped facets of the inner PtZn nanoparticles confined and shaped by the outer Zn-NC nest is highly active for the critical C-C bond cleavage of ethanol in oxidation, confirmed by experimental characterizations and density functional theory calculations.
View Article and Find Full Text PDFDirect ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.
View Article and Find Full Text PDFThe purpose of the present study was to investigate the effect of microRNA (miR)-144-5p on human umbilical vein endothelial cells (HUVECs) to explore the role of miR-144-5p in atherosclerosis. miR-144-5p expression was upregulated in HUVECs using miR-144-5p mimics. The relative expression level of miR-144-5p in HUVECs was detected using reverse transcription-quantitative PCR (RT-qPCR).
View Article and Find Full Text PDFAtherosclerosis is a multifactorial chronic disease that is a major cause of death and injury worldwide. Apoptosis of endothelial cells (ECs) serves an important role in the occurrence and development of atherosclerosis. MicroRNAs (miRNAs) serve a key role in atherosclerosis though regulating the function of ECs.
View Article and Find Full Text PDF