Microcystin-LR (MC-LR) and nitrites from the environment and daily life can be ingested and absorbed by humans via the digestive tract. However, their combined effects on intestinal health remain unclear. Here, the combined impact of MC-LR and sodium nitrite (NaNO) on the intestines of mice was investigated under actual human exposure conditions.
View Article and Find Full Text PDFThe degradation of cyanobacterial blooms releases hazardous contaminants such as microcystin-LR (MC-LR) and nitrite, which may collectively exert toxicity on various bodily systems. To evaluate their individual and combined toxicity in the kidney, mice were subjected to different concentrations of MC-LR and/or nitrite over a 6-month period in this study. The results revealed that combined exposure to MC-LR and nitrite exacerbated renal pathological alterations and dysfunction compared to exposure to either compound alone.
View Article and Find Full Text PDFMicrocystin-LR (MC-LR) and sodium nitrite (NaNO) co-exist in the environment and are hepatotoxic. The liver has the function of lipid metabolism, but the impacts and mechanisms of MC-LR and NaNO on liver lipid metabolism are unclear. Therefore, we established a chronic exposure model of Balb/c mice and used LO2 cells for in vitro verification to investigate the effects and mechanisms of liver lipid metabolism caused by MC-LR and NaNO.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are a class of endocrine-disrupting chemicals (EDCs) widely present in the environment. PCBs have been of concern due to their anti/estrogen-like effects, which make them more toxic to the female reproductive system. However, there is still a lack of systematic reviews on the reproductive toxicity of PCBs in females, so the adverse effects and mechanisms of PCBs on the female reproductive system were summarized in this paper.
View Article and Find Full Text PDFMicrocystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function.
View Article and Find Full Text PDFAs a common pollutant in the water environment, microcystin leucine arginine (MC-LR) can enter semen and damage the sperm in animals. However, the mechanism by which MC-LR damages human sperm is unclear. Therefore, human sperm samples were obtained from the Henan Provincial Sperm Bank and exposed to different concentrations (0, 1, 10, and 100 μg/L) of MC-LR for 1, 2, 4, and 6 h, to invegest the effects and potential mechanism of MC-LR on sperm.
View Article and Find Full Text PDF