Cationic surfactant-stabilized oil-in-water emulsions pose a significant challenge in separation due to the presence of surfactants. Herein, we develop a collagen-fiber-based CFM-PMDA-TiO membrane with unique infiltration properties capable of efficiently separating cationic surfactant-stabilized oil-in-water emulsions by exploiting the charge-demulsification effect. The membrane exhibits superhydrophilic and submerged superoleophobic properties, making it highly suitable for separating a wide range of commercially available cationic surfactant-stabilized oil-in-water microemulsions and nanoemulsions, which demonstrates an exceptional separation efficiency as high as 99.
View Article and Find Full Text PDFThere are approximately 4 billion tons of uranium in the ocean, which is unmatched by the surface. Nevertheless, it's very challenging to extract uranium from the ocean due to the exceedingly low concentration of uranium in the ocean (about 3.3 μg L) as well as high salinity level.
View Article and Find Full Text PDFDye wastewater has become one of the difficult industrial wastewaters due to its significant characteristics such as high chroma and poor biodegradability. Here, we use collagen fibers (CFs) as the matrix, glutaraldehyde as the cross-linking agent, and polyethyleneimine (PEI) as the ammoniating modifier to prepare cationic-modified collagen fibers (CF-PEI). The CF-PEI still maintained the original fibrous structure with a larger adsorption area.
View Article and Find Full Text PDFEfficient and rapid removal of p-arsanilic acid (p-ASA) in water is very important in environmental protection and human health, however it is still a severe challenge in actual engineering. Herein, a novel sorbent (CF-PEI) was successfully fabricated by simply modifying the amphiphilic skin collagen fiber (CF) substrate with Polyethylenimine (PEI). The as-prepared CF-PEI exhibits high-efficiency adsorption for negatively charged p-ASA with aromatic rings due to the introduction of amino groups and the existence of hydrophobic bands, and the maximum adsorption capacity of CF-PEI for p-ASA was high up to 285.
View Article and Find Full Text PDF