Pancreatic ductal adenocarcinoma remains a highly aggressive and untreatable cancer. There is a need to develop a new PDAC-associated antigen-targeting drug delivery system to tackle this disease. We validated choosing ZIP4 as a putative target in PDAC theranostics.
View Article and Find Full Text PDFBackground: As the most common subtype of colorectal cancer, colorectal adenocarcinoma (COAD) still needs better prognostic stratification methods and new intervention targets. The mitochondrial stress response, linked to mitochondrial homeostasis and cancer metabolism, warrants further investigation.
Methods: We identified mitochondrial oxidative stress-related genes (MOS) associated with COAD prognosis through the TCGA and GEO databases.
Exosomes, nanoscopic extracellular vesicles produced by cells, are pivotal in mediating intracellular communication by transporting nucleic acids, proteins, lipids, and other bioactive molecules, thereby influencing physiological and pathological states. Their endogenous origin and inherent diversity confer distinct advantages over synthetic vehicles like liposomes and nanoparticles in diagnostic and therapeutic applications. Despite their potential, the clinical utility of exosomes is hampered by challenges such as limited storage stability, yield, purity, and targeting efficiency.
View Article and Find Full Text PDFNumerous variational methods have been proposed for solving quantum many-body systems, but they often face exponentially increasing computational complexity as the Hilbert space dimension grows. To address this, we introduce a novel approach using quantum neural networks to simulate the dissipative dynamics of many-body open quantum systems. This method combines neural-network quantum state representation with the time-dependent variational principle, both implemented via quantum algorithms.
View Article and Find Full Text PDFBackground: Eukaryotic genes contain introns that are removed by the spliceosomal machinery during mRNA maturation. Introns impose a huge energetic burden on a cell; therefore, they must play an essential role in maintaining genome stability and/or regulating gene expression. Many genes (> 50%) in Plasmodium parasites contain predicted introns, including introns in 5' and 3' untranslated regions (UTR).
View Article and Find Full Text PDFMetal-free diradicals based on polycyclic aromatic hydrocarbons are promising candidates for organic spintronics due to their stable magnetism and tunable spin coupling. However, distinguishing and elucidating the origins of ferromagnetic and antiferromagnetic interactions in these systems remain challenging. Here, we investigate the diradical molecule sandwiched between gold electrodes using a combined density functional theory and hierarchical equations of motion approach.
View Article and Find Full Text PDFMagnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear.
View Article and Find Full Text PDFMutations in a Plasmodium de-ubiquitinase UBP1 have been linked to antimalarial drug resistance. However, the UBP1-mediated drug-resistant mechanism remains unknown. Through drug selection, genetic mapping, allelic exchange, and functional characterization, here we show that simultaneous mutations of two amino acids (I1560N and P2874T) in the Plasmodium yoelii UBP1 can mediate high-level resistance to mefloquine, lumefantrine, and piperaquine.
View Article and Find Full Text PDFThe entanglement between system and bath often plays a pivotal role in complex systems spanning multiple orders of magnitude. A system-bath entanglement theorem was previously established for Gaussian environments in J. Chem.
View Article and Find Full Text PDFThe objective of this study was to explore the influence of the polymorphism of the protocadherin 9 () gene and the narcissistic personality trait (NPT) on the risk of major depressive disorder (MDD) in Chinese first-year university students. A 2-year cohort study was conducted among Chinese first-year university students who were enrolled in 2018 from two universities in Shandong Province, China. The snapshot technique was used to detect the genotypes of (rs9540720).
View Article and Find Full Text PDFCerebral malaria (CM) is the deadliest complication of malaria infection with an estimated 15%-25% mortality. Even with timely and effective treatment with antimalarial drugs such as quinine and artemisinin derivatives, survivors of CM may suffer long-term cognitive and neurological impairment. Here, we show that human apolipoprotein E variant 2 (hApoE2) protects mice from experimental CM (ECM) via suppression of CD8 T cell activation and infiltration to the brain, enhanced cholesterol metabolism, and increased IFN-γ production, leading to reduced endothelial cell apoptosis, BBB disruption, and ECM symptoms.
View Article and Find Full Text PDFDuck Tembusu virus disease, caused by duck Tembusu virus (DTMUV), brings great harm to duck industry. Early diagnosis is of great significance for the prevention and control of this disease. In order to develop a specific and sensitive method for rapid diagnosis of DTMUV, reverse-transcriptase recombinase aided amplification combined with lateral flow dipstick (RT-RAA-LFD) method for detection of DTMUV was established.
View Article and Find Full Text PDFIn this work, we investigate the multimode Brownian oscillators in nonequilibrium scenarios with multiple reservoirs at different temperatures. For this purpose, an algebraic method is proposed. This approach gives the exact time-local equation of motion for the reduced density operator, from which we can easily extract not only the reduced system but also hybrid bath dynamical information.
View Article and Find Full Text PDFIn this paper, we present an extended dissipaton equation of motion for studying the dynamics of electronic impurity systems. Compared with the original theoretical formalism, the quadratic couplings are introduced into the Hamiltonian accounting for the interaction between the impurity and its surrounding environment. By exploiting the quadratic fermionic dissipaton algebra, the proposed extended dissipaton equation of motion offers a powerful tool for studying the dynamical behaviors of electronic impurity systems, particularly in situations where nonequilibrium and strongly correlated effects play significant roles.
View Article and Find Full Text PDFBackground: Panic disorder (PD), major depressive disorder (MDD), and the comorbidity (PD&MDD) in college students have caused a heavy disease burden for individuals and families. However, little was known for the comorbidity, especially the impact of parental rearing style on the incidence of the PD&MDD comorbidity.
Methods: A cohort study was conducted among 6652 Chinese college students.
Dissipaton theory had been proposed as an exact, nonperturbative approach to deal with open quantum system dynamics, where the influence of the Gaussian environment is characterized by statistical quasi-particles, named dissipatons. In this work, we revisit the dissipaton equation of motion theory and establish an equivalent dissipaton-embedded quantum master equation (DQME) that gives rise to dissipatons as generalized Brownian particles. As explained in this work, the DQME supplies a direct approach to investigate the statistical characteristics of dissipatons and, thus, the physically supporting hybrid bath modes.
View Article and Find Full Text PDFObjective: Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in maintaining peripheral immune tolerance. The use of tolerogenic DCs (tolDCs), i.e.
View Article and Find Full Text PDFMachine learning (ML) has demonstrated its potential usefulness for the development of density functional theory methods. In this work, we construct an ML model to correct the density functional approximations, which adopts semilocal descriptors of electron density and density derivative and is trained by accurate reference data of relative and absolute energies. The resulting ML-corrected functional is tested on a comprehensive dataset including various types of energetic properties.
View Article and Find Full Text PDFComorbidities due to inflammatory bowel disease (IBD) and anxiety are commonly acknowledged; however, their underlying basis is unclear. In the current study, we first conducted a clinical retrospective analysis to identify the enhancive incidence rate of IBD before or after the epidemic of Corona Virus Disease 2019 (COVID-19), with higher Generalized Anxiety Disorder-7 (GAD-7), as well as poorer Gastrointestinal Quality of Life Index (GIQLI). Then, the dextran sodium sulfate (DSS) and chronic unpredictable stress (CUS)-induced IBD and anxiety comorbid models were established with the correlational relations between symptoms of IBD and anxiety-related behaviors.
View Article and Find Full Text PDFScreening of large and diverse libraries is the 'bread and butter' in the first phase of the discovery of novel drugs. However, maintenance and periodic renewal of high-quality large compound collections pose considerable logistic, environmental and monetary problems. Here, we exercise an alternative, the 'on-the-fly' synthesis of large and diverse libraries on a nanoscale in a highly automated fashion.
View Article and Find Full Text PDFIn this paper, we present a comprehensive account of quantum dissipation theories with the quadratic environment couplings. The theoretical development includes the Brownian solvation mode embedded hierarchical quantum master equations, a core-system hierarchy construction that verifies the extended dissipaton equation of motion (DEOM) formalism [R. X.
View Article and Find Full Text PDFRecent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy.
View Article and Find Full Text PDF