Mediators Inflamm
October 2024
Sepsis is defined as a life-threatening disease. Autophagy and the microbiome are increasingly connected with sepsis. The aim of this study was to investigate the protective effect of autophagy and the possible mechanisms.
View Article and Find Full Text PDFThe primary catalyst for nonalcoholic fatty liver disease (NAFLD) is widely recognized as the induction of lipotoxicity in hepatocytes by an excess of fatty acids. In China, Pursh (PcP) is commonly employed as a functional food due to its known hepatoprotective properties. The present study aimed to investigate the influence of PcP extract on in vivo and in vitro models of NAFLD.
View Article and Find Full Text PDFAims: The aim of this study was to investigate the protective effect of HLJDD on septic rats and the underlying mechanisms.
Materials And Methods: Adult male Sprague-Dawley (SD) adult rats (150-180 g) were randomly divided into the following 5 groups (n = 7 per group): the Sham group, caecal ligation and puncture (CLP) group, HLJDD + CLP (Huang Lian Jie Du Decoction, HLJDD) group (1 g/mL/100 g), HLJDD + Rap + CLP (H. Rap) group (Rap: 3 mg/kg), and HLJDD+3-MA + CLP (H.
It is currently thought that excess fatty acid-induced lipotoxicity in hepatocytes is a critical initiator in the development of nonalcoholic fatty liver disease (NAFLD). Lipotoxicity can induce hepatocyte death; thus, reducing lipotoxicity is one of the most effective therapeutic methods to combat NAFLD. Abundant evidence has shown that hesperidin (HSP), a type of flavanone mainly found in citrus fruits, is able to ameliorate NAFLD, but the molecular mechanisms are unclear.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease, and it carries a poor prognosis due to a lack of efficient diagnosis methods and treatments. Epithelial-mesenchymal transition (EMT) plays a key role in IPF pathogenesis. Endoplasmic reticulum (ER) stress contributes to fibrosis via EMT-mediated pathways.
View Article and Find Full Text PDFNeuropathic pain (NeP) is a major health concern. Due to the complex pathological mechanisms, management of NeP is challenging. Emodin, a natural anthraquinone derivative, exerts excellent analgesic effects.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
April 2022
The present study investigated the effect of emodin on the serum metabolite profiles in the chronic constriction injury(CCI) model by non-target metabolomics and explored its analgesic mechanism. Twenty-four Sprague Dawley(SD) rats were randomly divided into a sham group(S), a CCI group(C), and an emodin group(E). The rats in the emodin group were taken emodin via gavage once a day for fifteen days(50 mg·kg~(-1)) on the first day after the CCI surgery.
View Article and Find Full Text PDFObjectives: Endothelial dysfunction is a precursor of cardiovascular disease, and protecting endothelial cells from damage is a treatment strategy for atherosclerosis (AS). Curcumin, a natural polyphenolic compound, has been shown to protect endothelial cells from dysfunction. In the present study, we investigated whether curcumin could ameliorate high oxidized low-density lipoprotein (ox-LDL)-induced endothelial lipotoxicity by inducing autophagy in human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFExcessive free fatty acid- (FFA-) induced endothelial lipotoxicity is involved in the pathogenesis of atherosclerosis. Endoplasmic reticulum (ER) stress is mechanistically related to endothelial lipotoxicity. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major oxidatively modified low-density lipoprotein (OxLDL) receptor in endothelial cells and is highly abundant in atherosclerotic lesions.
View Article and Find Full Text PDFDelicately designed dopant-free hole-transporting materials (HTMs) with ordered structure have become one of the major strategies to achieve high-performance perovskite solar cells (PSCs). In this work, we report two donor-π linker-donor (D-π-D) HTMs, N01 and N02, which consist of facilely synthesized 4,8-di(n-hexyloxy)-benzo[1,2-b:4,5-b']dithiophene as a π linker, with 10-bromohexyl-10H-phenoxazine and 10-hexyl-10H-phenoxazine as donors, respectively. The N01 molecules form a two-dimensional conjugated network governed by C-H⋅⋅⋅O and C-H⋅⋅⋅Br interaction between phenoxazine donors, and synchronously construct a three-dimension lamellar structure with the aid of interlaminar π-π interaction.
View Article and Find Full Text PDFThe aim of this study was to investigate how mesenchymal stromal cells (MSCs) modulate metabolic balance and attenuate hepatic lipotoxicity in the context of non-alcoholic fatty liver disease (NAFLD). In vivo, male SD rats were fed with high-fat diet (HFD) to develop NAFLD; then, they were treated twice by intravenous injections of rat bone marrow MSCs. In vitro, HepG2 cells were cocultured with MSCs by transwell and exposed to palmitic acid (PA) for 24 hours.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2020
High levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction (ED), which is involved in the pathogenesis of metabolic syndrome, diabetes, and atherosclerosis. Endoplasmic reticulum (ER) stress and endothelial-to-mesenchymal transition (EndMT) are demonstrated to be mechanistically related to endothelial dysfunction. Mesenchymal stem cells (MSCs) have exhibited an extraordinary cytoprotective effect on cellular lipotoxicity and vasculopathy.
View Article and Find Full Text PDFMacrophage polarization toward the M1 phenotype and its subsequent inflammatory response have been implicated in the progression of diabetic complications. Despite adverse consequences of autophagy impairment on macrophage inflammation, the regulation of macrophage autophagy under hyperglycemic conditions is incompletely understood. Here, we report that the autophagy-lysosome system and mitochondrial function are impaired in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated RAW 264.
View Article and Find Full Text PDFPurpose: It is demonstrated that unsaturated fatty acids can counteract saturated fatty acids-induced lipotoxicity, but the molecular mechanisms are unclear. In this study, we investigated the protective effects of monounsaturated oleic acid (OA) against saturated palmitic acid (PA)-induced cytotoxicity in rat β cells as well as islets, and mechanistically focused on its regulation on endoplasmic reticulum (ER) stress.
Methods: Rat insulinoma cell line INS-1E cells and primary islets were treated with PA with or without OA for 24 h to determine the cell viability, apoptosis, and ER stress.
Biomed Pharmacother
January 2019
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions.
View Article and Find Full Text PDFInt Immunopharmacol
August 2018
Inflammatory factors play an important role in the pathogenesis of diabetic vascular complications. Considerable interest in the therapeutic potential of mesenchymal stem cells (MSCs) has recently arisen. The purposes of this study were to investigate the effects of MSCs on endothelial cells under inflammatory conditions and to determine the relevant mechanism underlying these effects.
View Article and Find Full Text PDFUnlabelled: Aim This study aims to demonstrate the protective effects of monounsaturated oleic acid (OA) against saturated palmitic acid (PA) induced cellular lipotoxicity in hepatocytes and rats with non-alcoholic steatohepatitis (NASH).
Main Methods: Human hepatoma cell line HepG2 cells and neonatal rat primary hepatocytes were treated with PA or/and OA for 24 h. SD rats were fed with high fat diet (HFD) to induce NASH.
Vasculopathy is a major complication of diabetes. Impaired mitochondrial bioenergetics and biogenesis due to oxidative stress are a critical causal factor for diabetic endothelial dysfunction. Sirt1, an NAD-dependent enzyme, is known to play an important protective role through deacetylation of many substrates involved in oxidative phosphorylation and reactive oxygen species generation.
View Article and Find Full Text PDFCorticotrophin Releasing Factor (CRF) is a critical stress-related neuropeptide in major output pathways of the amygdala, including the central nucleus (CeA), and in a key projection target of the CeA, the bed nucleus of the stria terminalis (BnST). While progress has been made in understanding the contributions and characteristics of CRF as a neuropeptide in rodent behavior, little attention has been committed to determine the properties and synaptic physiology of specific populations of CRF-expressing (CRF(+)) and non-expressing (CRF(-)) neurons in the CeA and BnST. Here, we fill this gap by electrophysiologically characterizing distinct neuronal subtypes in CeA and BnST.
View Article and Find Full Text PDFUnlabelled: The vascular system particularly endothelium is sensitive to ischemia-reperfusion (I/R) injury, which is a big challenge in surgical practices and many vascular disorders. In the present study, we reported the global gene expression changes in a 2-h ischemia and 4-h reperfusion injury induced in the hind limb vessels of rhesus monkeys (Macaca mulatta) using microarray technique.
Results: The histological results showed abnormal morphology of endothelial cells after 2-h ischemia and the hematological detection found slightly extension of coagulation time after I/R treatment.
Front Neural Circuits
April 2014
Striatonigral and striatopallidal projecting medium spiny neurons (MSNs) express dopamine D1 (D1+) and D2 receptors (D2+), respectively. Both classes receive extensive GABAergic input via expression of synaptic, perisynaptic, and extrasynaptic GABAA receptors. The activation patterns of different presynaptic GABAergic neurons produce transient and sustained GABAA receptor-mediated conductance that fulfill distinct physiological roles.
View Article and Find Full Text PDFCholine acetyltransferase-expressing interneurones (ChAT)(+) of the striatum influence the activity of medium spiny projecting neurones (MSNs) and striatal output via a disynaptic mechanism that involves GABAergic neurotransmission. Using transgenic mice that allow visual identification of MSNs and distinct populations of GABAergic interneurones expressing neuropeptide Y (NPY)(+), parvalbumin (PV)(+) and tyrosine hydroxylase (TH)(+), we further elucidate this mechanism by studying nicotinic ACh receptor (nAChR)-mediated responses. First, we determined whether striatal neurones exhibit pharmacologically induced nicotinic responses by performing patch-clamp recordings.
View Article and Find Full Text PDF