Publications by authors named "Ruituo Huai"

Temporal interference (TI) as a new neuromodulation technique can be applied to non-invasive deep brain stimulation. In order to verify its effectiveness in the regulation of motor behavior in animals, this paper uses the TI method to focus the envelope electric field to the ventral posterior lateral nucleus (VPL) of the thalamus in the deep brain of mouse to regulate left- and right-turning motor behavior. The focusability of TI in the mouse VPL was analyzed by finite element method, and the focus area and volume were obtained by numerical calculation.

View Article and Find Full Text PDF

To explore the feasibility of applying magnetic stimulation technology to the movement control of animal robots, the influence of coil radius, number of turns and other factors on the intensity, depth and focus of magnetic stimulation was simulated and analyzed for robot pigeons. The coil design scheme was proposed. The coil was placed on the head and one of the legs of the pigeon, and the leg electromyography (EMG) was recorded when magnetic stimulation was performed.

View Article and Find Full Text PDF

Background And Objectives: In daily life, the intake of dietary nutrients is mixed. However, evidence for the association between mixed dietary B vitamin intake and insulin resistance is limited. In this study, we estimated the joint effect of intake of various dietary B vitamins on insulin resistance.

View Article and Find Full Text PDF

Power supply plays a key role in ensuring animal robots to obtain effective stimulation. To extending the stimulating time, there is a need to apply photovoltaic cells and monitor their parameter variations, which can help operators to obtain the optimal stimulation strategy. In this paper, an online monitoring system of photovoltaic cells for animal robot stimulators was presented.

View Article and Find Full Text PDF

An evaluation method is described that will enable researchers to study fight control characteristics of robo-pigeons in fully open space. It is not limited by the experimental environment and overcomes environmental interference with flight control in small experimental spaces using a compact system. The system consists of two components: a global positioning system (GPS)-based stimulator with dimensions of 38 mm × 26 mm × 8 mm and a weight of 18 g that can easily be carried by a pigeon as a backpack and a PC-based program developed in Virtual C++.

View Article and Find Full Text PDF

Protein tyrosine kinase (PTK) mediated the tyrosine phosphorylation modification of neuronal receptors and ion channels. Whether such modification resulted in changes of physiological functions was not sufficiently studied. In this study we examined whether the hypoxic respiratory response-which is the enhancement of breathing in hypoxic environment could be affected by the inhibition of PTK at brainstem ventral respiratory neuron column (VRC).

View Article and Find Full Text PDF

Almost all multichannel microelectrodes are only applied to the same nucleus. The multiple brain regions synchronization implanted microelectrodes can be implanted in the several brain regions at the same time, when used in the robo-animal, which can reduce the operation process, shorten animals operation time. Due to electrode position relatively fixed, errors caused by each separately implanted electrode were reduced and the animal control effect was greatly increased compared to the original electrodes.

View Article and Find Full Text PDF

In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon.

View Article and Find Full Text PDF

Calcium-activated chloride channels (CaCCs) have been implicated in hypertension; however, the mechanism underlying their involvement is unknown. The aim of this study was to determine whether the CaCC ANO1 is involved in the pathogenesis of spontaneous hypertension. Arterial ANO1 expression and the effects on blood pressure (BP) of inhibiting ANO1 with an ANO1 inhibitor, T16(Ainh)-A01, and in vivo RNAi, were examined in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Background: Although 7,8-dihydroxyflavone (7,8-DHF) has been demonstrated to be potently neuroprotective, its effect on vascular function remains unknown.

Methods: The effect of 7,8-DHF on phenylephrine (PE)-induced preconstriction was examined with aortic rings isolated from normal rats. Its effective mechanisms were studied with blockers, Western blotting, and primarily cultured vascular smooth myocytes.

View Article and Find Full Text PDF