Publications by authors named "Ruiting Zheng"

Ion implantation is an effective way to control performance in semiconductor technology. In this paper, the fabrication of 1~5 nm porous silicon by helium ion implantation was systemically studied, and the growth mechanism and regulation mechanism of helium bubbles in monocrystalline silicon at low temperatures were revealed. In this work, 100 keV He ions (1~7.

View Article and Find Full Text PDF

The degradation of imidacloprid and acetamiprid in tea infusion by ultraviolet (UV) light irradiation was investigated in this study. Results showed that the influence of UV light irradiation on the quality of tea infusion was controllable and UV light irradiation was effective on the degradation of both pesticides. The maximum removal rates were 75.

View Article and Find Full Text PDF

In this study, an imine-linked luminescent porous organic network (PON) has been successfully synthesized by the Schiff-base condensation reaction between 1,2-diphenylethylenediamine and tris(4-formylphenyl)amine. It exhibits strong fluorescence in an aqueous dispersion and can be applied as a luminescent probe for Cr(VI) (CrO and CrO) with high selectivity and sensitivity (LOD for CrO and CrO were below 0.35 μM and 0.

View Article and Find Full Text PDF

Diffraction gratings with high upward diffraction efficiency and large effective length are required for chip-scale light detection and ranging. We propose a diffraction grating based on a multilayer silicon nitride waveguide, which theoretically achieves an upward diffraction efficiency of 92%, a near-field effective length of 376 µm, and a far-field divergence angle of 0.105° at a wavelength of 850 nm.

View Article and Find Full Text PDF

Nanocarbon materials have been widely used for nanoelectronics and energy-related applications. In this work, composite films consisting of reduced graphene oxides (rGOs) and single-wall carbon nanotubes (SWCNTs) are synthesized and studied for their in-plane thermal conductivities. Different from pristine carbon nanotubes or graphene with decreased thermal conductivities above 300 K, the in-plane thermal conductivities of these composite films are found to follow the trend of the specific heat of graphene from 100 to 400 K, i.

View Article and Find Full Text PDF

For monitoring diverse pollutants in a complicated water environment, the design and development of various detection strategies are necessary. Here, we introduce a general strategy of water monitoring aimed at amphiphilic pollutants using carbon nanotube based film. The pollutants with amphiphilic characteristics can tune the wetting behavior between carbon nanotubes and water molecules, leading to the change in the interface resistance of the carbon nanotube based film.

View Article and Find Full Text PDF

The interface structure in nanocomposite materials often directly influences the electric, thermal, and mechanical properties of functional architectures and limits their application in many fields, in addition to the characteristics of their nanobuilding blocks. In this work, we report that the electronic transport characteristic of a well-ordered carbon nanotube film is adjusted by the structural evolution of the junction caused by capillary effects. This mechanism can explain the resistance change and recovery throughout the immersion-evaporation process and even the anomalous transient decrease in the resistance.

View Article and Find Full Text PDF

Uniform dispersion of Au-Ag alloy nanoparticles underneath the surface of a Si wafer is realized via Au film pre-deposition and Ag ion implantation. The Au-Ag nanoparticles are used as catalysts in metal assisted chemical etching for fabricating Si nanowire arrays with average diameters of less than 10 nm. We find that the alloy catalysts introduced by ion implantation are the key to obtaining thin nanowire arrays and we also demonstrate that SiNWAs with various diameters could be simply produced by changing the thickness of the pre-deposited Au layer.

View Article and Find Full Text PDF

Vertically aligned single-crystal silicon nanowire arrays (SiNWs) with various lengths, surface roughnesses and porosities were fabricated with the metal-assisted chemical etching method. Using the laser flash technique and differential scanning calorimetry, we characterized the thermal conductivities of bulk SiNWs/Si/SiNWs sandwich-structured composites (SSCs) at room temperature (300 K). The results demonstrate that the thermal conductivities of SSCs notably decrease with increases in the length, surface roughness and porosity of SiNWs.

View Article and Find Full Text PDF

Vertical multi-layer graphenes (MLGs) have been synthesized without a catalyst on planar and nano-structured substrates by using microwave plasma enhanced chemical vapor deposition. The growth of MLGs on non-carbon substrates is quite different from that on carbon-based substrates. It starts with a pre-deposition of a carbon buffer layer to achieve a homo-epitaxial growth.

View Article and Find Full Text PDF

Maximizing the optical absorption of one-dimensional Si nanostructure arrays (1DSiNSAs) is desirable for excellent performance of 1DSiNSA-based optoelectronic devices. However, a quite large surface-to-volume ratio and enhanced surface roughness are usually produced by modulation of the morphology of the 1DSiNSAs prepared in a top-down method to improve their optical absorption. Surface recombination is mainly determined by the surface characteristics and significantly affects the photogenerated carrier collection.

View Article and Find Full Text PDF

Structures and field emission properties of silicon nanowire arrays (SiNWAs), which were fabricated by using of electroless-chemical etching method and post-implanted by the energetic carbon ion beam with an average energy of 20 keV at various doses, have been investigated. Structural analysis of SEM and XPS shows that SiC compound had been formed at the top of SiNWAs, and Si-C/Si composite nanostructure had been obtained. Compared to as-grown SiNWAs, the C ion implanted SiNWAs have better field emission characteristics.

View Article and Find Full Text PDF

The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse.

View Article and Find Full Text PDF

The carbon nanotube (CNT) and graphene hybrid is an attractive candidate for field emission (FE) because of its unique properties, such as high conductivity, large aspect ratio of CNT, and numerous sharp edges of graphene. We report here a vapor-solid growth of few-layer graphene (FLG, less than 10 layers) on CNTs (FLG/CNT) and Si wafers using a radio frequency sputtering deposition system. Based on SEM, TEM, and Raman spectrum analyses, a defect nucleation mechanism of the FLG growth was proposed.

View Article and Find Full Text PDF

Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures.

View Article and Find Full Text PDF

Au-Si nano-particle-decorated silicon nanowire arrays have been fabricated by Au film deposition on silicon nanowire array substrates and then post-thermal annealing under hydrogen atmosphere. Field emission measurements illustrated that the turn-on fields of the non-annealed Au-coated SiNWs were 6.02 to 7.

View Article and Find Full Text PDF

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature.

View Article and Find Full Text PDF

Silicon nanowire (SiNW) arrays irradiated by energetic Si ions were fabricated by metal vapor vacuum arc (MEVVA) ion implantation method. Hetero-structure of amorphous/crystalline nanowire was formed in which structure of the implanted region on the top of the nanowires was amorphous while the structure of unimplanted region on the bottom remained crystal. Field emission (FE) properties of the SiNW arrays could be improved and modulated by different implantation doses.

View Article and Find Full Text PDF

Carbon nanotubes were subjected to doping with an energetic Ag ion beam, and the carbon nanotubes on the top of the array were transformed into amorphous carbon nanowires with embedded Ag-nanoparticles. The field emission characteristics of these nanowires were investigated. The minimum turn-on and threshold fields were 0.

View Article and Find Full Text PDF

This paper presents the synthesis of water-dissolvable Na(2)SO(4) nanowires and nanorods by a simple chemical reaction between CuSO(4) and NaBH(4) in ethylene glycol. By adjusting the pH and the monomer concentration, the aspect ratio and size of the Na(2)SO(4) nanowires could be tuned. Na(2)SO(4) nanorods, nanowhiskers, nanowires, and submicrorods were obtained.

View Article and Find Full Text PDF

Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity.

View Article and Find Full Text PDF

An array of silicon carbide nanowire (SiCNW)-carbon nanotube (CNT) heterojunctions was fabricated by high-flux Si ion implantation into a multi-walled carbon nanotube (MWCNT) array with a metal vapor vacuum arc (MEVVA) ion source. Under Si irradiation, the top part of a CNT array was gradually transformed into an amorphous nanowire array with increasing Si dose while the bottom part still remained a CNT structure. X-ray photoelectron spectroscopy (XPS) analysis shows that the SiC compound was produced in the nanowire part even at the lower Si dose of 5 × 10(16) ions cm(-2), and the SiC amount increased with increasing the Si dose.

View Article and Find Full Text PDF

A series of comparative Raman study of carbon nanotubes arrays prepared by thermal chemical vapor deposition are reported. The results suggest that the G mode and D mode of carbon nanotubes (CNTs) arrays are all downshifted as compared to that of polycrystalline graphite, and the shifted number in well-aligned CNTs arrays is more than that in misaligned CNTs arrays. Moreover, the intensity ratio ID/IG indicates the ordering in CNTs arrays.

View Article and Find Full Text PDF