Publications by authors named "Ruishen Meng"

Two-dimensional (2D) topological insulators (TIs) or quantum spin Hall (QSH) insulators, characterized by insulating 2D electronic band structures and metallic helical edge states protected by time-reversal symmetry, offer a platform for realizing the quantum spin Hall effect, making them promising candidates for future spintronic devices and quantum computing. However, observing a high-temperature quantum spin Hall effect requires large-gap 2D TIs, and only a few 2D systems have been experimentally confirmed to possess this property. In this study, we employ first-principles calculations, combined with a structural search based on an evolutionary algorithm, to predict a class of 2D QSH insulators in hafnium halides, namely, HfF, HfCl, and HfBr with sizable band gaps of 0.

View Article and Find Full Text PDF

Using spin-polarized first-principles calculations based on density functional theory, we study the stability, electronic properties and magnetic behavior induced by hole-doping of two-dimensional (2D) PbBr and HgBr. Although inherently nonmagnetic, these materials can exhibit stable ferromagnetic order when hole-doped at densities above a few 10 cm. We also examined the impact of intrinsic and extrinsic defects on inducing hole-doping and subsequent ferromagnetism.

View Article and Find Full Text PDF

The interaction between Au(= 1-6) clusters and graphene is studied using first-principles simulations, based on density functional theory. The computed binding energy between Auand graphene depends on the number of atoms in the cluster and lies between -0.6 eV and -1.

View Article and Find Full Text PDF

Layered materials held together by weak van der Waals (vdW) interactions are a promising class of materials in the field of nanotechnology. Besides the potential for single layers, stacking of various vdW layers becomes even more promising since unique properties can hence be precisely engineered. The synthesis of stacked vdW layers, however, remains to date, hardly understood.

View Article and Find Full Text PDF

Ferromagnetic character and biocompatible properties have become key factors for developing next-generation spintronic devices and show potential in biomedical applications. Unfortunately, the Mn-containing monolayer is not biocompatible though it has been extensively studied, and the Cr-containing monolayer is not environmental friendly, although these monolayers are ferromagnetic. Herein, we systematically investigated new types of 2D ferromagnetic monolayers NbX (X = Cl, Br or I) by means of first principles calculations together with mean field approximation based on the classical Heisenberg model.

View Article and Find Full Text PDF

Using density functional theory calculations with van der Waals correction, we show that the electronic properties (band gap and carrier mobility) and work functions of graphane/fully hydrogenated hexagonal boron nitride (G/fHBN) heterobilayers can be favorably tuned via heteronuclear dihydrogen bonding (C-HH-B and C-HH-N) and an external electric field. Our results reveal that G/fHBN heterobilayers have different direct band gaps of ∼1.2 eV and ∼3.

View Article and Find Full Text PDF

The structural, electronic and optical properties of the graphene hybrid with stanene, the tin counterpart of graphene, are investigated by means of density functional calculation with the observation of band gap opening and enhanced visible light response. The lattice mismatch between graphene and stanene is taken into consideration and several stacking methods for model construction are proposed to study the possible effects. The Dirac feature can be observed in this bilayer system with relatively stronger interlayer interaction than weak van der Waals forces, which is ascribed to the unsaturated p orbital of stanene.

View Article and Find Full Text PDF

Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order.

View Article and Find Full Text PDF