Publications by authors named "Ruirun Chen"

The potential of hydrogen plasma arc technology for the efficient deoxygenation and recycling of titanium alloy scrap is explored. The results of thermodynamic analysis reveal that hydrogen plasma is suitable for oxygen removal. The intermediate stages of the deoxygenation process are sequentially analyzed, showing that the hydrogen plasma arc primarily facilitated the reduction and dissolution of oxides as well as eliminated interstitial oxygen.

View Article and Find Full Text PDF

Lightweight ZrTiVAl high-entropy alloys have shown great potential as a hydrogen storage material due to their appreciable capacity, easy activation, and fast hydrogenation rates. In this study, transition metal Fe was used to improve the hydrogen storage properties of the equimolar ZrTiVAl alloy, and ZrTiVAl Fe ( = 0, 0.2, 0.

View Article and Find Full Text PDF

In order to acquire TiAl composites with a multi-scale reinforcing phase, and to improve the microstructure and tensile properties at elevated temperatures, TiAl alloys have been prepared with different added carbon content levels via vacuum arc melting. The results show that when the carbon content is greater than or equal to 1.0 at%, then TiAlC forms and the microstructure changes from having a dendrite morphology to an equiaxed crystal morphology.

View Article and Find Full Text PDF

In order to improve the uneven distribution of carbon fibers (CFs) in the matrix by traditional single mechanical stirring, mechanical combined with electromagnetic (M-E) stirring was used to prepare short carbon fibers reinforced aluminum matrix (Csf/Al) composites. The 3-D flow field of aluminum melt under mechanical/M-E stirring were calculated and compared. The calculation results show that the complexity of flow field under M-E stirring could be significantly enhanced relative to a single mechanical stirring, especially there was a strong melt flow near the crucible wall due to the skin effect.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting.

View Article and Find Full Text PDF

Experiments have been carried out to study the relationship between the addition of tantalum and microstructure, especially the formation of the B2 phase in lamellar colonies. The mechanical properties, with different contents of Ta, were also measured. Ti46Al8Nb2.

View Article and Find Full Text PDF

In this article, microstructural evolution during the solidification of Ti-48Al-2Cr-2Nb with current density, as well as the formation mechanisms, are discussed, along with the impacts on microhardness and hot compression properties. The applied electric current promotes the solidification from the α primary phase to a largely β solidification in Ti-48Al-2Cr-2Nb. With an increase in supercooling, the solidification process have a tendency to change from an α-led primary phase to (α + β)-led primary phase.

View Article and Find Full Text PDF

Intermetallic alloys with high melting point can mostly serve as promising high-temperature structural materials, but their intrinsic brittleness limits their further application. Herein, we developed a strategy to realize high strength and high plasticity simultaneously in Cr-rich γ-TiAl-based intermetallic alloys via introducing high-density deformation nanotwins. Non-equilibrium continuous casting followed by annealing in the (α + γ) phase region generated numerous Shockley partial dislocations and stacking faults as well as a number of α2 nanoparticles in the γ-TiAl phase.

View Article and Find Full Text PDF

In spite of their high temperature and reactivity, the binary TiAl alloys are successfully imposed by the ultrasonic irradiation and the microstructure evolution, solidification behaviors and mechanical properties are elaborately investigated. After ultrasonic irradiation, a high quality ingot without shrinkage defects and element segregation is obtained and the coarse dendrite structure is well modified into fine non-dendrite globular grains. The coarse lamellar colony and lamellar space of Ti44Al alloy is refined from 685μm to 52μm and 1185nm to 312nm, respectively (similarly, 819μm to 102μm and 2085nm to 565nm for Ti48Al alloy).

View Article and Find Full Text PDF

The effect of substitution of Nb by Mo in NbTiNi was investigated with respect to microstructural features and hydrogen dissolution, diffusion and permeation. As-cast NbMoTiNi (x = 0, 5, 10) alloys consist of primary bcc-Nb phase and binary eutectic (bcc-Nb + B2-TiNi). The substitution of Nb by Mo reduces the hydrogen solubility in alloys, but may increase (x = 5) or decrease (x = 10) the apparent hydrogen diffusivity and permeability.

View Article and Find Full Text PDF

To modify the microstructure and enhance performances, the ultrasonic vibration is applied in the mould casting of TiAl alloy. The effects and mechanism of ultrasonic vibration on the solidifying microstructure and mechanical properties are investigated and the model for predicting lamellar colony size is established. After ultrasonic vibration, the coarse microstructure is well modified and lamellar colony is refined from 534 μm to 56 μm.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionngt8m3cod16gibpa00jhtn6t6iptliis): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once