The discovery and development of novel pharmaceutical agents is characterized by high costs, lengthy timelines, and significant safety concerns. Traditional drug discovery involves pharmacologists manually screening drug molecules against protein targets, focusing on binding within protein cavities. However, this manual process is slow and inherently limited.
View Article and Find Full Text PDFAccurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH.
View Article and Find Full Text PDFFundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2024
Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly.
View Article and Find Full Text PDFSchizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2024
COVID-19, caused by the highly contagious SARS-CoV-2 virus, is distinguished by its positive-sense, single-stranded RNA genome. A thorough understanding of SARS-CoV-2 pathogenesis is crucial for halting its proliferation. Notably, the 3C-like protease of the coronavirus (denoted as 3CL) is instrumental in the viral replication process.
View Article and Find Full Text PDFChemical structure segmentation constitutes a pivotal task in cheminformatics, involving the extraction and abstraction of structural information of chemical compounds from text-based sources, including patents and scientific articles. This study introduces a deep learning approach to chemical structure segmentation, employing a Vision Transformer (ViT) to discern the structural patterns of chemical compounds from their graphical representations. The Chemistry-Segment Anything Model (ChemSAM) achieves state-of-the-art results on publicly available benchmark datasets and real-world tasks, underscoring its effectiveness in accurately segmenting chemical structures from text-based sources.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2024
Deep learning methods are frequently used in segmenting histopathology images with high-quality annotations nowadays. Compared with well-annotated data, coarse, scribbling-like labelling is more cost-effective and easier to obtain in clinical practice. The coarse annotations provide limited supervision, so employing them directly for segmentation network training remains challenging.
View Article and Find Full Text PDFPrecise and rapid categorization of images in the B-scan ultrasound modality is vital for diagnosing ocular diseases. Nevertheless, distinguishing various diseases in ultrasound still challenges experienced ophthalmologists. Thus a novel contrastive disentangled network (CDNet) is developed in this work, aiming to tackle the fine-grained image categorization (FGIC) challenges of ocular abnormalities in ultrasound images, including intraocular tumor (IOT), retinal detachment (RD), posterior scleral staphyloma (PSS), and vitreous hemorrhage (VH).
View Article and Find Full Text PDFPurpose: The lack of finely annotated pathologic data has limited the application of deep learning systems (DLS) to the automated interpretation of pathologic slides. Therefore, this study develops a robust self-supervised learning (SSL) pathology diagnostic system to automatically detect malignant melanoma (MM) in the eyelid with limited annotation.
Design: Development of a self-supervised diagnosis pipeline based on a public dataset, then refined and tested on a private, real-world clinical dataset.
Protein succinylation is a novel type of post-translational modification in recent decade years. It played an important role in biological structure and functions verified by experiments. However, it is time consuming and laborious for the wet experimental identification of succinylation sites.
View Article and Find Full Text PDFParasites can cause enormous damage to their hosts. Studies have shown that antiparasitic peptides can inhibit the growth and development of parasites and even kill them. Because traditional biological methods to determine the activity of antiparasitic peptides are time-consuming and costly, a method for large-scale prediction of antiparasitic peptides is urgently needed.
View Article and Find Full Text PDFCancer remains one of the most threatening diseases, which kills millions of lives every year. As a promising perspective for cancer treatments, anticancer peptides (ACPs) overcome a lot of disadvantages of traditional treatments. However, it is time-consuming and expensive to identify ACPs through conventional experiments.
View Article and Find Full Text PDFAccurate segmentation of the tumour area is crucial for the treatment and prognosis of patients with bladder cancer. However, the complex information from the MRI image poses an important challenge for us to accurately segment the lesion, for example, the high distinction among people, size of bladder variation and noise interference. Based on the above issues, we propose an MD-Unet network structure, which uses multi-scale images as the input of the network, and combines max-pooling with dilated convolution to increase the receptive field of the convolutional network.
View Article and Find Full Text PDFAs cancer remains one of the main threats of human life, developing efficient cancer treatments is urgent. Anticancer peptides, which could overcome the significant side effects and poor results of traditional cancer treatments, have become a new potential alternative these years. However, identifying anticancer peptides by experimental methods is time consuming and resource consuming, it is of great significance to develop effective computational tools to quickly and accurately identify potential anticancer peptides from amino acid sequences.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFBackground Miniature inverted repeat transposable element (MITE) is a short transposable element, carrying no protein-coding regions. However, its high proliferation rate and sequence-specific insertion preference renders it as a good genetic tool for both natural evolution and experimental insertion mutagenesis. Recently active MITE copies are those with clear signals of Terminal Inverted Repeats (TIRs) and Direct Repeats (DRs), and are recently translocated into their current sites.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance but imposes challenges on prediction methods due to label interactions. In this paper we propose a novel multi-label learning model to address this problem.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2018
Many biomedical classification problems are multi-label by nature, e.g., a gene involved in a variety of functions and a patient with multiple diseases.
View Article and Find Full Text PDFInterdiscip Sci
September 2017
Disease diagnosis is one of the major data mining questions by the clinicians. The current diagnosis models usually have a strong assumption that one patient has only one disease, i.e.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPRs) are important genetic elements in many bacterial and archaeal genomes, and play a key role in prokaryote immune systems' fight against invasive foreign elements. The CRISPR system has also been engineered to facilitate target gene editing in eukaryotic genomes. Using the common features of mis-annotated CRISPRs in prokaryotic genomes, this study proposed an accurate de novo CRISPR annotation program CRISPRdigger, which can take a partially assembled genome as its input.
View Article and Find Full Text PDFMotivation. Clustered regularly interspaced short palindromic repeat (CRISPR) is a genetic element with active regulation roles for foreign invasive genes in the prokaryotic genomes and has been engineered to work with the CRISPR-associated sequence (Cas) gene Cas9 as one of the modern genome editing technologies. Due to inconsistent definitions, the existing CRISPR detection programs seem to have missed some weak CRISPR signals.
View Article and Find Full Text PDFBackground: High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem.
View Article and Find Full Text PDF