Publications by authors named "Ruiqiang Lu"

Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, inspired by the DNA-encoded compound library technique, we introduce DeepBlock, a deep learning approach for block-based ligand generation tailored to target protein sequences while enabling precise property control.

View Article and Find Full Text PDF

Rapid and accurate prediction of drug-target affinity can accelerate and improve the drug discovery process. Recent studies show that deep learning models may have the potential to provide fast and accurate drug-target affinity prediction. However, the existing deep learning models still have their own disadvantages that make it difficult to complete the task satisfactorily.

View Article and Find Full Text PDF

Deep learning-based in silico alternatives have been demonstrated to be of significant importance in the acceleration of the drug discovery process and enhancement of success rates. Cyclin-dependent kinase 12 (CDK12) is a transcription-related cyclin-dependent kinase that may act as a biomarker and therapeutic target for cancers. However, currently, there is no high selective CDK12 inhibitor in clinical development and the identification of new specific CDK12 inhibitors has become increasingly challenging due to their similarity with CDK13.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment.

View Article and Find Full Text PDF