Publications by authors named "Ruiqi R Wang"

During homeostasis and after injury, adult muscle stem cells (MuSCs) activate to mediate muscle regeneration. However, much remains unclear regarding the heterogeneous capacity of MuSCs for self-renewal and regeneration. Here, we show that Lin28a is expressed in embryonic limb bud muscle progenitors, and that a rare reserve subset of Lin28aPax7 skeletal MuSCs can respond to injury at adult stage by replenishing the Pax7 MuSC pool to drive muscle regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Cachexia is a severe muscle-wasting syndrome often seen in advanced cancer patients, affecting 80% of them and significantly contributing to morbidity and mortality.
  • Research indicates that cachectic cancer cells secrete inflammatory factors that enhance fatty acid metabolism, activating stress responses in skeletal muscles before muscle atrophy is evident.
  • Targeting fatty acid-induced oxidative stress may be a potential way to combat cancer-induced cachexia, as blocking this process has shown benefits in restoring muscle growth and improving overall body weight.
View Article and Find Full Text PDF

SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C.

View Article and Find Full Text PDF

Transient receptor potential vanilloid (TRPV) channels, which include the thermosensitive TRPV1-V4, have large cytoplasmic regions flanking the transmembrane domain, including an N-terminal ankyrin repeat domain. We show that a multiligand binding site for ATP and calmodulin previously identified in the TRPV1 ankyrin repeat domain is conserved in TRPV3 and TRPV4, but not TRPV2. Accordingly, TRPV2 is insensitive to intracellular ATP, while, as previously observed with TRPV1, a sensitizing effect of ATP on TRPV4 required an intact binding site.

View Article and Find Full Text PDF

Ion channels are often modulated by intracellular calcium levels. TRPV1, a channel responsible for the burning pain sensation in response to heat, acid or capsaicin, is desensitized at high intracellular calcium concentrations. We recently identified a multiligand-binding site in the N-terminal ankyrin repeat domain (ARD) of TRPV1 that binds ATP and sensitizes the channel.

View Article and Find Full Text PDF

Transient receptor potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation.

View Article and Find Full Text PDF