Publications by authors named "Ruiqi Liao"

Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.

Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.

View Article and Find Full Text PDF

Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids.

View Article and Find Full Text PDF

The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis.

View Article and Find Full Text PDF

Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes.

View Article and Find Full Text PDF

Although establishment and maintenance of mitochondria are essential for the production of massive amounts of heme in erythroblasts, mitochondria must be degraded upon terminal differentiation to red blood cells (RBCs), thus creating a biphasic regulatory process. Previously, we reported that iron deficiency in mice promotes mitochondrial retention in RBCs, suggesting that a proper amount of iron and/or heme is necessary for the degradation of mitochondria during erythroblast maturation. Because the transcription factor GATA1 regulates autophagy in erythroid cells, which involves mitochondrial clearance (mitophagy), we investigated the relationship between iron or heme and mitophagy by analyzing the expression of genes related to GATA1 and autophagy and the impact of iron or heme restriction on the amount of mitochondria.

View Article and Find Full Text PDF

The hematopoietic transcription factor GATA1 induces heme accumulation during erythropoiesis by directly activating genes mediating heme biosynthesis. In addition to its canonical functions as a hemoglobin prosthetic group and enzyme cofactor, heme regulates gene expression in erythroid cells both transcriptionally and post-transcriptionally. Heme binding to the transcriptional repressor BACH1 triggers its proteolytic degradation.

View Article and Find Full Text PDF

The role of BrKAO2 in leafy head formation was confirmed by using two allelic Chinese cabbage mutants. Chinese cabbage yield and quality are determined by leafy head formation. Cloning and characterising the key genes regulating leafy head formation are essential for its varietal improvement.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shows that patients with both ASXL1 and NRAS mutations experience shorter leukemia-free survival compared to those with only ASXL1 mutations, and similar results were observed in mouse models which also exhibited aggressive disease progression.
  • * NA-AML cells (from the mouse model) overexpress immune checkpoint ligands and show high MEK/ERK signaling activity, but combining treatments targeting MEK and BET can improve immune responses and extend survival
View Article and Find Full Text PDF

Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells.

View Article and Find Full Text PDF

Protein ensembles control genome function by establishing, maintaining, and deconstructing cell-type-specific chromosomal landscapes. A plethora of small molecules orchestrate cellular functions and therefore may link physiological processes with genome biology. The metabolic enzyme and hemoglobin cofactor heme induces proteolysis of a transcriptional repressor, Bach1, and regulates gene expression post-transcriptionally.

View Article and Find Full Text PDF

By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome.

View Article and Find Full Text PDF

Background: Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells.

View Article and Find Full Text PDF

Transposons and retroviruses are important pathogenic agents and tools for mutagenesis and transgenesis. Insertion target selection is a key feature for a given transposon or retrovirus. The piggyBac (PB) transposon is highly active in mice and human cells, which has a much better genome-wide distribution compared to the retrovirus and P-element.

View Article and Find Full Text PDF

Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.

View Article and Find Full Text PDF

The rapid development of high-throughput technologies enables researchers to sequence the whole metagenome of a microbial community sampled directly from the environment. The assignment of these sequence reads into different species or taxonomical classes is a crucial step for metagenomic analysis, which is referred to as binning of metagenomic data. Most traditional binning methods rely on known reference genomes for accurate assignment of the sequence reads, therefore cannot classify reads from unknown species without the help of close references.

View Article and Find Full Text PDF

In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics.

View Article and Find Full Text PDF

In the past decades, advances in high-throughput technologies have led to the generation of huge amounts of biological data that require analysis and interpretation. Recently, nonnegative matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of data as well as to interpret them, and has been applied to various fields of biological research. In this paper, we present CloudNMF, a distributed open-source implementation of NMF on a MapReduce framework.

View Article and Find Full Text PDF

Background: Plant microRNAs (miRNAs) have been revealed to play important roles in developmental control, hormone secretion, cell differentiation and proliferation, and response to environmental stresses. However, our knowledge about the regulatory mechanisms and functions of miRNAs remains very limited. The main difficulties lie in two aspects.

View Article and Find Full Text PDF