Publications by authors named "Ruiping Ren"

Objective To construct a risk prediction model by integrating the molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) and immune-related genes.Methods With GSE71729 data set (=145) as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.An integrated immune score (IIS) model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested with 5 validation sets (=758).

View Article and Find Full Text PDF

Sphingolipid metabolism affects prognosis and resistance to immunotherapy in patients with cancer and is an emerging target in cancer therapy with promising diagnostic and prognostic value. Long noncoding ribonucleic acids (lncRNAs) broadly regulate tumour-associated metabolic reprogramming. However, the potential of sphingolipid metabolism-related lncRNAs in pancreatic adenocarcinoma (PAAD) is poorly understood.

View Article and Find Full Text PDF

GNG5 is suggested to exert a critical effect on tumor development in human beings; however, its function and related mechanism within breast cancer (BC) are still unclear. In this regard, the present work focused on identifying and evaluating GNG5's function and revealing its possible molecular mechanism. Subcutaneous tumorigenesis model of nude mice and in-vitro cell model was established.

View Article and Find Full Text PDF

Mutations leading to homologous recombination deficiency (HRD) increase the tumor sensitivity to platinum-based chemotherapy and PARP inhibitors. However, reversion mutations often develop conferring acquired drug resistance. There is still a lack of comprehensive investigation on HRR reversion mutations in large pan-cancer cohorts, especially in the Eastern Asian population.

View Article and Find Full Text PDF

This study investigated the role of miRNA-144 (miR-144) targeting of the long noncoding DNAJC3-AS1 in regulating breast cancer chemosensitivity. Real-time quantitative polymerase chain reaction was employed to detect the levels of miR-144 in different drug-resistant cells. MTT assays were used to measure the proliferation of cells in different treatment groups.

View Article and Find Full Text PDF

Aims: The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated.

Main Methods: Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.

View Article and Find Full Text PDF

Recent evidence has shown that irradiation can promote the invasiveness of hepatocellular carcinoma cells and have an impact on the invasive behavior of nonirradiated surrounding cancer cells, which may enhance overall tumor aggressiveness. However, the role of the TP53 tumor suppressor gene in the invasion of irradiated hepatoma cells and their nonirradiated bystanders remain largely unknown. In the present study, we found that irradiation increased the invasiveness of human hepatoma HepG2 cells, and pretreatment of the cells with SU1498 (an inhibitor of vascular endothelial growth factor receptor 2, VEGFR2) and GM6001 (an inhibitor of matrix metalloproteinases 2, MMP2) demonstrated that radiation-enhanced invasiveness is associated with the interplay between MMP2 and VEGF signaling.

View Article and Find Full Text PDF

Combination radiation is a real situation of both nuclear accident exposure and space radiation environment, but its biological dosimetry is still not established. This study investigated the dose-response of micronuclei (MN) induction in lymphocyte by irradiating HMy2.CIR lymphoblast cells with α-particles, γ-rays, and their combinations.

View Article and Find Full Text PDF

Intratumoral hypoxic cells are more resistant to radiotherapy due to a reduction in lifespan of DNA-damaging free radicals and augmentation of post-irradiation molecular restoration. SirT1, a member of the mammalian sirtuin family, deacetylates various transcription factors to trigger cell defense and survival in response to stresses and DNA damage. In this study, we provide new evidence indicating that overexpression of SirT1 in hepatoma HepG2 cells allowed the cells to become much more resistant to irradiation under hypoxia than under normoxia.

View Article and Find Full Text PDF