Regulator of cell death-1 (RCD-1) governs the heteroallelic expression of RCD-1-1 and RCD-1-2, a pair of fungal gasdermin (GSDM)-like proteins, which prevent cytoplasmic mixing during allorecognition and safeguard against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (e.g., senescence plasmids) by effecting a form of cytolytic cell death.
View Article and Find Full Text PDFThe significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials.
View Article and Find Full Text PDFResearch (Wash D C)
February 2022
SARS-CoV-2 has caused a severe pneumonia pandemic worldwide with high morbidity and mortality. How to develop a preclinical model for recapitulating SARS-CoV-2 pathogenesis is still urgent and essential for the control of the pandemic. Here, we have established a 3D biomimetic alveolus-on-a-chip with mechanical strain and extracellular matrix taken into consideration.
View Article and Find Full Text PDFHigh-internal phase emulsions (HIPEs) were considered as an important functional material and have been the focus of intense development effort, but their fundamental attributes have hardly been altered at either the microcosmic or macroscopic level, which severely limits their practical applications in various areas. In this work, we report a general strategy for creating complex HIPEs that can form interfacial films at liquid interfaces. Double HIPEs and Janus HIPEs are both realized for the first time.
View Article and Find Full Text PDFLow concentrations of carbon monoxide (CO) can play vital roles in pharmacological and physiological functions in the human body. The transition-metal carbonyl complexes of the tricarbonyldichlororuthenium(II) dimer [Ru(CO)Cl (CORM-2)] were proposed as CO-releasing molecules (CORMs) to improve the delivery efficiency of CO for therapeutic effects. The accurate identification of final products for CORMs in solution and the detailed mechanisms of the release of CO were the essential prerequisite for its effective physiological application, which have been deficient.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2021
While two-dimensional infrared (2D-IR) spectroscopy is uniquely suitable for monitoring femtosecond (fs) to picosecond (ps) water dynamics around static protein structures, its utility for probing enzyme active-site dynamics is limited due to the lack of site-specific 2D-IR probes. We demonstrate the genetic incorporation of a novel 2D-IR probe, m-azido-L-tyrosine (N3Y) in the active-site of DddK, an iron-dependent enzyme that catalyzes the conversion of dimethylsulfoniopropionate to dimethylsulphide. Our results show that both the oxidation of active-site iron to Fe , and the addition of denaturation reagents, result in significant decrease in enzyme activity and active-site water motion confinement.
View Article and Find Full Text PDFCorrelated cell migration in fibrous extracellular matrix (ECM) is important in many biological processes. During migration, cells can remodel the ECM, leading to the formation of mesoscale structures such as fiber bundles. However, how such mesoscale structures regulate correlated single-cells migration remains to be elucidated.
View Article and Find Full Text PDFCharacterization of biomolecular dynamics at cellular membranes lags far behind that in solutions because of challenges to measure transmembrane trafficking with subnanometer precision. Herein, by introducing nonfluorescent quenchers into extracellular environment of live cells, we adopted Förster resonance energy transfer from one donor to multiple quenchers to measure positional changes of biomolecules in plasma membranes. We demonstrated the method by monitoring flip-flops of individual lipids and by capturing transient states of the host defense peptide LL-37 in plasma membranes.
View Article and Find Full Text PDF