Background: Anti-tuberculosis drug-induced liver injury (ATLI) is a significant adverse drug reaction with genetic susceptibility implications.
Aim: This study aimed to integrate findings from systematic reviews and meta-analyses on genetic polymorphisms associated with ATLI risk, enhance evidence synthesis, and identify susceptibility gene polymorphisms linked to ATLI occurrence.
Method: The protocol was registered in PROSPERO (CRD42024517311).
Objective: The pathogenesis of antituberculosis drug-induced liver injury (AT-DILI) remains largely unknown. The current investigation aimed to determine the genetic contribution of the nuclear receptor subfamily 1 Group I member 3 () and nuclear receptor subfamily 1 Group H member 4 () genes to the risk of AT-DILI in the Chinese population.
Methods: A 1:4 matched case‒control study was conducted, and five single nucleotide polymorphisms (SNPs) in the and genes were detected and assessed.
Clinically, conventional sutures for repair of short-distance nerve injuries (< 5 mm) may contribute to uncontrolled inflammation and scar formation, thus negatively impacting nerve regeneration. To repair transected peripheral nerves with short distances, a rapid-forming, robust adhesive chitosan hydrogel is prepared by synthesizing maleic and dopamine bi-functionalized fungal-sourced chitosan (DM) and subsequently photopolymerizing DM precursor solution. The hydrogel rapidly polymerized under UV light irradiation (≈2 s) and possessed a strong adhesive strength (273.
View Article and Find Full Text PDFHyaluronic acid hydrogels are promising materials for diverse applications, yet their potential is hampered by limitations such as low self-healing efficiency and insufficient mechanical strength. Inspired by the heterogeneous structures of spider silk, we introduce a novel dual dynamically crosslinked network hydrogel. This hydrogel comprises an acylhydrazone-crosslinked network, utilizing aldehyde hyaluronic acid (AHA) and 3,3'-dithiobis (propionohydrazide) (DTP) as a first network, and a secondary network formed by hydrogen bonds-crosslinked network between tannic acid (TA) and silk fibroin (SF) with β-sheet formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Developing extracellular matrix-derived hydrogel with a fast self-healing capacity to provide a sustainable moist environment able to accelerate wound healing is highly desired for full-thickness skin wound repair. In this study, a fast self-healing hyaluronic acid hydrogel with a dual dynamic network was constructed through a primary reversible acylhydrazone bond formed between aldehyde-modified hyaluronic acid, 3,3'-dithiobis (propionyl hydrazide) (DTP), and secondary dynamic ionic interactions between κ-carrageenan (KC) and K. Because of the presence of various dynamic covalent bonds such as the acylhydrazone bond, disulfide bond, and noncovalent bonds including hydrogen bonding and ionic interactions, as well as the notable thermoreversible nature of KC, the resultant hydrogel could be self-healed rapidly within 30 min under physiological temperature with a self-healing efficiency of 100%, which was significantly better than other hyaluronic acid hydrogels, as reported previously.
View Article and Find Full Text PDFThe rapid absorption of water from the blood to concentrate erythrocytes and platelets, thus triggering quick closure, is important for hemostasis. Herein, expansion-clotting chitosan fabrics are designed and fabricated by ring spinning of polylactic acid (PLA) filaments as the core layer and highly hydrophilic carboxyethyl chitosan (CECS) fibers as the sheath layer, and subsequent knitting of obtained PLA@CECS core spun yarns. Due to the unidirectional fast-absorption capacity of CECS fibers, the chitosan fabrics can achieve erythrocytes and platelets aggregate quickly by concentrating blood, thus promoting the formation of blood clots.
View Article and Find Full Text PDFA continuously stable moist healing environment is immensely beneficial for wound healing, which can be availably achieved by providing an in situ hydrogel with enough strength resembling skin tissue and self-healing ability. Herein, through a dual-crosslinking strategy, hyaluronic acid-based hydrogels with excellent self-healing capacity and enhanced mechanical properties are fabricated via the acylhydrazone linkages and subsequent photocrosslinking based on hydrazide-modified sodium hyaluronate and aldehyde-modified maleic sodium hyaluronate. The hydrogels demonstrate the fast gelation process (< 1 min), the controlled swelling behaviors, and the good biocompatibility.
View Article and Find Full Text PDFThe self-healing hydrogel offering intrinsic antibacterial activity is often required for the treatment of wounds because it can provide effective wound protection and prevent wound infection. Herein, antibacterial hyaluronic acid hydrogels with enhanced self-healing performances are prepared by multiple dynamic-bond crosslinking between aldehyde hyaluronic acid, 3, 3'- dithiobis (propionyl hydrazide) and fungal-sourced quaternized chitosan. Due to the formation of these different types of reversible interactions e.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
February 2022
Research on flow diverter (FD) has progressed over the past decades; however, the relationships between parameters such as stent diameter, porosity, and number of wires and the properties of FDs, such as partial compressive force and push resistance, are not well understood. In this study, the partial compressive force and push resistance of braided FDs with varying porosity (61%-75%), diameter (2.5-5.
View Article and Find Full Text PDF