Publications by authors named "Ruimin Peng"

Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice.

View Article and Find Full Text PDF

Epilepsy is a pervasive neurological disorder affecting approximately 50 million individuals worldwide. Electroencephalogram (EEG) based seizure subtype classification plays a crucial role in epilepsy diagnosis and treatment. However, automatic seizure subtype classification faces at least two challenges: 1) class imbalance, i.

View Article and Find Full Text PDF

Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, which can protect the privacy of the source patients, while reducing the amount of labeled calibration data for a new patient.

View Article and Find Full Text PDF

Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have been widely used in biology, engineering, healthcare, etc. This article proposes BoostForest, which is an ensemble learning approach using BoostTree as base learners and can be used for both classification and regression.

View Article and Find Full Text PDF

Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. However, manual seizure subtype classification is expensive and time-consuming, whereas automatic classification usually needs a large number of labeled samples for model training. This paper proposes an EEGNet-based slim deep neural network, which relieves the labeled data requirement in EEG-based seizure subtype classification.

View Article and Find Full Text PDF

A brain-computer interface (BCI) enables a user to communicate directly with an external device, e.g., a computer, using brain signals.

View Article and Find Full Text PDF