Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes.
View Article and Find Full Text PDFThe adiabatic potential energies for the lowest three states of a LiH system are calculated with a high level method (MCSCF/MRCI) with a large basis set (aV5Z). The accurate three dimensional B-spline fitting method is used to map the global adiabatic potential energy surfaces, using the existing adiabatic potential energies, for the lowest two adiabatic states of the title reaction system. The different vibrational states and corresponding energies are studied for the diatomic molecule of reactant and products.
View Article and Find Full Text PDFThe three lowest full three-dimensional adiabatic and three diabatic global potential energy surfaces are reported for the title system. The accurate ab initio method (MCSCF/MRCI) with larger basis sets (aug-cc-pVQZ) is used to reduce the adiabatic potential energies, and the global adiabatic potential energy surfaces are deduced by a three-dimensional B-spline fitting method. The conical intersections and the mixing angles between the lowest three adiabatic potential energy surfaces are precisely studied.
View Article and Find Full Text PDF