A novel fluorescent sensor based on silver nanoparticle-carbon dot composites (Ag@CDs) has been developed for the rapid and quantitative detection of aquatic bacteria. The sensor operates on the principle of plasmon-enhanced resonance energy transfer, where the fluorescence of CDs is quenched by Ag nanoparticles and restored upon bacterial interaction due to the generation of reactive oxygen species. The Ag@CDs exhibit a linear response to bacterial concentration over the range 7 × 10 ~ 4 × 10 CFU·mL, with a low detection limit of 4 × 10 CFU·mL.
View Article and Find Full Text PDFWith their regulated Boolean logic operations in vitro and in vivo, DNA logic circuits have shown great promise for target recognition and disease diagnosis. However, significant obstacles must be overcome to improve their operational efficiency and broaden their range of applications. In this study, we propose an Exo III-powered closed-loop DNA circuit (ECDC) architecture that integrates four highly efficient AND logic gates.
View Article and Find Full Text PDFNuclear targeted delivery has great potential in improving the efficiency of non-viral carrier mediated genome editing. However, direct and efficient delivery of CRISPR/Cas9 plasmid into the nucleus remains a challenge. In this study, a nuclear targeted gene delivery platform based on fluorescent carbon quantum dots (CQDs) was developed.
View Article and Find Full Text PDFWe present polarization-independent optical shutters with a sub-millisecond switching time. The approach utilizes dual-frequency nematics doped with a dichroic dye. Two nematic cells with orthogonal alignment are driven simultaneously by a low-frequency or high-frequency electric field to switch the shutter either into a transparent or a light-absorbing state.
View Article and Find Full Text PDFThe original version of this article contained an error in the description of Supplementary Movie 7, which incorrectly read 'Collision resulting in annihilation of two solitons. U = 45.1 V, f = 600 Hz, T = 50 °C, d = 8.
View Article and Find Full Text PDFElectric field-induced collective reorientation of nematic molecules is of importance for fundamental science and practical applications. This reorientation is either homogeneous over the area of electrodes, as in displays, or periodically modulated, as in electroconvection. The question is whether spatially localized three-dimensional solitary waves of molecular reorientation could be created.
View Article and Find Full Text PDFBiomed Pharmacother
August 2015
MicroRNAs play a key role in carcinogenesis or tumor progression, which negatively and posttranscriptionally regulate gene expression and function as oncogenes or tumor suppressors, as well as regulators of cell cycle, proliferation, apoptosis, migration and other processes. A number of miRNAs are reported be related to the occurrence and development of colorectal cancer (CRC). However, these studies were not involved in the effect of miRNA 144 of CRC, whose function remains unclear.
View Article and Find Full Text PDFThe eukaryotic class II polypeptide chain release factor (eRF3) is an eRF1- and ribosome-dependent GTPase involved in translation termination of protein biosynthesis. eRF3 is a multifunctional protein that is also involved in chromosomal segregation and cytokinesis during mitosis. Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is involved in the organisation of spindle and cell apoptosis.
View Article and Find Full Text PDF