Severe injury occurs in the lung after acute spinal cord injury (ASCI) and autophagy is inhibited. However, rapamycin-activated autophagy's role and mechanism in lung injury development after ASCI is unknown. Preventing lung injury after ASCI by regulating autophagy is currently a valuable and unknown area.
View Article and Find Full Text PDFTraumatic injury to the spinal cord causes permanent loss of function and major personal, social, and economic problems. Cell-based delivery strategies is a promising approach for treating spinal cord injury (SCI). However, the inhospitable microenvironment in the injured spinal cord results in poor cell survival and uncontrolled differentiation of the transplanted stem cells.
View Article and Find Full Text PDFBackground Context: Lung injury is a major cause of respiratory complications following an acute spinal cord injury (ASCI), which are associated with a high mortality rate. Autophagy has been shown to be involved in a variety of lung diseases; however, whether autophagy is activated in the lung following ASCI remains unknown.
Purpose: The objective of this study was to investigate the induction of autophagy in the lung after ASCI.