Publications by authors named "Ruilian Yin"

Aqueous zinc ion batteries (AZIBs), which have attracted attentions in the field of energy storage, is affected by dendrites and side reactions of Zn anode, resulting in an unsatisfactory performance of AZIBs. Herein, we propose a biased adsorption strategy mediated by straight-chain molecule (Scm) for stabilizing Zn anode. The dual polar termini of Scms guaranties securely anchor themselves in a parallel orientation upon the Zn anode surface.

View Article and Find Full Text PDF
Article Synopsis
  • The development of efficient oxygen electrocatalysts is crucial for improving Zn-air batteries (ZABs) across various temperatures.
  • A new approach using magnesium (Mg) to modulate cobalt (Co) catalysts shows enhanced electrocatalytic performance, with the MgCo─NC catalyst exhibiting an impressive lower activation energy for the oxygen reduction reaction.
  • The MgCo─NC catalyst not only delivers a high power density of 157.0 mW/cm², but also demonstrates remarkable durability and minimal capacity loss even under extreme temperature variations.
View Article and Find Full Text PDF

Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare.

View Article and Find Full Text PDF

The acquisition of pluripotent callus from somatic cells plays an important role in plant development studies and crop genetic improvement. This developmental process incorporates a series of cell fate transitions and reprogramming. However, our understanding of cell heterogeneity and mechanisms of cell fate transition during callus induction remains quite limited.

View Article and Find Full Text PDF

Herein, we develop innovative p-block Bi-doped CoO nanoflakes (Bi-CoO NFAs) on nickel foam, which exhibit excellent electrocatalytic activity for both glucose oxidation (GOR) and H evolution reactions (HER). The two-electrode GOR-HER electrolyzer using Bi-CoO NFAs as both the cathode and anode shows a remarkable reduced operation voltage of 1.48 V at 10 mA cm, superior to the 1.

View Article and Find Full Text PDF

Zn-NO batteries can generate electricity while producing NH in an environmentally friendly manner, making them a very promising device. However, the conversion of NO to NH involves a proton-assisted 8-electron (8e) transfer process with a high kinetic barrier, requiring high-performance catalysts to realize the potential applications of this technology. Herein, we propose a heterostructured CoO/CuO nanoarray electrocatalyst prepared on a copper foam (CoO/CuO-NA/CF) that can electrocatalytically and efficiently convert NO to NH at low potential and achieves a maximum NH yield of 296.

View Article and Find Full Text PDF

Developing highly active and robust oxygen catalysts is of great significance for the commercialization of Zn-air batteries (ZABs) with long-life stability. Herein, heterostructured catalysts comprising molybdenum carbide and metallic Co are prepared by a simple dicyandiamide-assisted pyrolysis strategy. Importantly, the crystalline phase of molybdenum carbide in the catalysts can be carefully regulated by adjusting the CoMo-imidazole precursor and dicyandiamide ratio.

View Article and Find Full Text PDF

The practical applications of temperature-tolerant Zn-air batteries (ZABs) rely on highly active and stable bifunctional catalysts that accelerate cathodic oxygen reduction (ORR) and oxygen evolution (OER) reactions. Herein, we successfully integrated fascinating transition metal nitrides and FeCo alloys through a simple coordination assembly and pyrolysis process. Importantly, the alloy-to-nitride ratio in the heterogeneous catalyst can be carefully regulated through the subsequent etching process.

View Article and Find Full Text PDF

Aqueous rechargeable zinc-ion batteries (ZIBs) have attracted burgeoning interests owing to the prospect in large-scale and safe energy storage application. Although manganese oxides are one of the typical cathodes of ZIBs, their practical usage is still hindered by poor service life and rate performance. Here, a MnO -carbon hybrid framework is reported, which is obtained in a reaction between the dimethylimidazole ligand from a rational designed MOF array and potassium permanganate, achieving ultralong-cycle-life ZIBs.

View Article and Find Full Text PDF

Electrochemically converting nitrate ions back to ammonia can not only eliminate water pollution but also obtain valuable ammonia without a serious carbon footprint, and is thus deemed as an efficient supplement to the traditional Haber-Bosch process. Currently reported catalysts can achieve a single electrode reaction in the electrochemical nitrate reduction reaction. However, the bifunctionality of a single catalyst for both cathodic and anodic reactions has not yet been reported.

View Article and Find Full Text PDF

The oxygen evolution reaction (OER) is a crucial reaction in water splitting, metal-air batteries, and other electrochemical conversion technologies. Rationally designed catalysts with rich active sites and high intrinsic activity have been considered as a hopeful strategy to address the sluggish kinetics for OER. However, constructing such active sites in non-noble catalysts still faces grand challenges.

View Article and Find Full Text PDF

Although aqueous zinc-ion batteries (ZIBs) are promising for scalable energy storage application, the actual performance of ZIBs is hampered by the irreversibility. Optimization of electrolyte composition is a relatively practical and facile way to improve coulombic efficiency (CE) and Zn plating/stripping reversibility of ZIBs. N,N-Dimethylacetamide (DMA) has a higher Gutmann donor number (DN) than that of H O, abundant polar groups, and economic price.

View Article and Find Full Text PDF

Understanding the complex functions of plant leaves requires a thorough characterization of discrete cell features. Although single-cell gene expression profiling technologies have been developed, their application in characterizing cell subtypes has not been achieved yet. Here, we present scStereo-seq (single-cell spatial enhanced resolution omics sequencing) that enabled us to show the bona fide single-cell spatial transcriptome profiles of Arabidopsis leaves.

View Article and Find Full Text PDF

Constructing sophisticated hollow structure and exposing more metal sites in metal-organic frameworks (MOFs) can not only enhance their catalytic performance but also endow them with new functions. Herein, we present a facile coordinative reconstruction strategy to transform Ti-MOF polyhedron into nanosheet-assembled hollow structure with a large amount of exposed metal sites. Importantly, the reconstruction process relies on the esterification reaction between the organic solvent, i.

View Article and Find Full Text PDF

A high-performance air electrode is essential for the successful application of flexible Zn-air batteries in wearable devices. However, endowing the electrode-electrolyte interface with high stability and fast electron/ion transportation is still a great challenge. Herein, we report a bioinspired interfacial engineering strategy to construct a cactus-like hybrid electrode comprising CoSe2 nanoparticles embedded in an N-doped carbon nanosheet arrays penetrated with carbon nanotubes (CoSe2-NCNT NSA).

View Article and Find Full Text PDF

Portable water splitting devices driven by rechargeable metal-air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (ZIBs) have been considered as prospective alternatives for lithium-ion batteries, which are able to serve as power sources for next-generation wearable and flexible devices, owing to the merits of abundant zinc resources and high safety of aqueous electrolyte. However, the lack of suitable cathode materials with flexibility for ZIBs hinders their further application. Herein, a novel cathode material [i.

View Article and Find Full Text PDF

Low-dimensional metal-organic frameworks (LD MOFs) have attracted increasing attention in recent years, which successfully combine the unique properties of MOFs, e.g., large surface area, tailorable structure, and uniform cavity, with the distinctive physical and chemical properties of LD nanomaterials, e.

View Article and Find Full Text PDF

Carbon-based materials have attracted intensive attentions for a wide range of energy and environment-related applications. Energy storage/conversion devices with improved performance have been achieved by utilization of metal-organic-framework (MOF)-derived carbon structures as active materials in recent years. However, the effects of MOF precursors on the performance of derived carbon materials are rarely investigated.

View Article and Find Full Text PDF

MXenes have emerged as promising electrode materials for microsupercapacitors (MSCs) owing to their high volumetric and areal capacitances. In addition to the development of novel electrode materials, fabrication of interdigital electrodes is another key to realize high-performance MSCs. Herein, we demonstrate the patterning of few-layered TiCT nanosheets on various substrates for MSCs by a facile, fast, and nearly zero-cost 'scratch' strategy.

View Article and Find Full Text PDF

Graphene composite fibers are of great importance in constructing electrode materials with high flexibility and conductivity for energy storage and electronic devices. Integration of multifunctional metal-organic frameworks (MOFs) into graphene fiber scaffolds enables novel functions and enhanced physical/chemical properties. The close-packed and aligned graphene sheets along with the porous MOF-derived structures can achieve excellent lithium storage performance through synergetic effects.

View Article and Find Full Text PDF