Publications by authors named "Ruilian Yao"

Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.

View Article and Find Full Text PDF

Phenazine-1-carboxamide (PCN) has been exploited as a successful biopesticide due to its broad-spectrum antifungal activity. We engineered a PCN-overproducing strain through overexpressing shikimate pathway genes (, , , and ) and deleting negative regulatory genes (, , and ). The optimized strain produced 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the addition of dithiothreitol (DTT) enhances phenazine production in the beneficial bacterium Pseudomonas chlororaphis GP72AN, which is known for its antifungal properties.
  • Using metabolomic and transcriptomic analyses, researchers found that DTT impacts various metabolic pathways, particularly those involved in central carbon metabolism and phenazine biosynthesis.
  • The findings suggest that manipulating gene expression related to these pathways could lead to more effective strategies for increasing phenazine production in the future.
View Article and Find Full Text PDF

¹³C metabolic flux analysis (¹³C-MFA) enables the precise quantification of intracellular metabolic reaction rates by analyzing the distribution of mass isotopomers of proteinogenic amino acids or intracellular metabolites through ¹³C labeling experiments. ¹³C-MFA has received much attention as it can help systematically understand cellular metabolic characteristics, guide metabolic engineering design and gain mechanistic insights into pathophysiology. This article reviews the advances of ¹³C-MFA in the past 30 years and discusses its potential and future perspective, with a focus on its application in industrial biotechnology and biomedicine.

View Article and Find Full Text PDF

CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated) has been extensively exploited as a genetic tool for genome editing. The RNA guided Cas nucleases generate DNA double-strand break (DSB), triggering cellular repair systems mainly Non-homologous end-joining (NHEJ, imprecise repair) or Homology-directed repair (HDR, precise repair). However, DSB typically leads to unexpected DNA changes and lethality in some organisms.

View Article and Find Full Text PDF

A microbial floc consisting of a community of microbes embedded in extracellular polymeric substances matrix can provide microbial resistances to toxic chemicals and harsh environments. Phenol is a toxic environmental pollutant and a typical lignin-derived phenolic inhibitor. In this study, we genetically engineered Escherichia coli cells by expressions of diguanylate cyclases (DGCs) to promote proteinaceous and aliphatic biofloc formation.

View Article and Find Full Text PDF

Background: Bioprocessing offers a sustainable and green approach to manufacture various chemicals and materials. Development of bioprocesses requires transforming common producer strains to cell factories. C metabolic flux analysis (C-MFA) can be applied to identify relevant targets to accomplish the desired phenotype, which has become one of the major tools to support systems metabolic engineering.

View Article and Find Full Text PDF

CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics.

View Article and Find Full Text PDF

Background: Glycerol, an inevitable byproduct of biodiesel, has become an attractive feedstock for the production of value-added chemicals due to its availability and low price. HT66 can use glycerol to synthesize phenazine-1-carboxamide (PCN), a phenazine derivative, which is strongly antagonistic to fungal phytopathogens. A systematic understanding of underlying mechanisms for the PCN overproduction will be important for the further improvement and industrialization.

View Article and Find Full Text PDF

Background: Glycerol, a byproduct of biodiesel, has become a readily available and inexpensive carbon source for the production of high-value products. However, the main drawback of glycerol utilization is the low consumption rate and shortage of NADPH formation, which may limit the production of NADPH-requiring products. To overcome these problems, we constructed a carbon catabolite repression-negative ΔptsGglpK* mutant by both blocking a key glucose PTS transporter and enhancing the glycerol conversion.

View Article and Find Full Text PDF
Article Synopsis
  • 13C metabolic flux analysis (13C-MFA) helps researchers measure metabolic rates in microorganisms and predict their behavior based on environmental and genetic factors.
  • The authors introduce MFlux, a web platform that uses machine learning to analyze data from about 100 studies on bacterial metabolism, employing methods like Support Vector Machine (SVM) for improved accuracy.
  • MFlux effectively predicts metabolic flux profiles based on various factors such as species and growth conditions, although its accuracy could improve with more diverse studies on non-model organisms.
View Article and Find Full Text PDF

Acetol, a C3 keto alcohol, is an important intermediate used to produce polyols and acrolein. To enhance acetol production from glycerol by Escherichia coli, a mutant (HJ02) was constructed by replacing the native glpK gene with the allele from E. coli Lin 43 and overexpression of yqhD, which encodes aldehyde oxidoreductase YqhD that converts methylglyoxal to acetol.

View Article and Find Full Text PDF

Background: Most bacteria can use various compounds as carbon sources. These carbon sources can be either co-metabolized or sequentially metabolized, where the latter phenomenon typically occurs as catabolite repression. From the practical application point of view of utilizing lignocellulose for the production of biofuels etc.

View Article and Find Full Text PDF