Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress.
View Article and Find Full Text PDFPurpose: To examine the role and mechanism of thrombospondin-1 (TSP1) in the development of fibrosis in diabetes mellitus-induced erectile dysfunction (DMED).
Materials And Methods: DMED was induced by intraperitoneal streptozotocin injection. All rats were categorized into three groups: control group (n=8), DMED group (n=8) and DMED+Leu-Ser-Lys-Leu (LSKL) group (n=8).
Ecotoxicol Environ Saf
September 2024
The adverse impacts of chronic hypoxia on maternal and infant health at high altitudes warrant significant attention. However, effective protective measures against the resultant growth restrictions and neurodevelopmental disorders in infants and young children are still lacking. This study investigated the neurodevelopment of mice offspring under hypoxic conditions by exposing pregnant mice to a hypobaric oxygen chamber that simulated the hypobaric hypoxia at an altitude of 4000 m until 28 days after delivery.
View Article and Find Full Text PDFCold-inducible RNA binding protein (CIRBP), a stress response protein, protects cells from mild hypothermia or hypoxia by stabilizing specific mRNAs and promoting their translation. Neurons subjected to hypobaric hypoxia insult trigger various cell death programs. One of these is ferroptosis, a novel non-apoptotic form of programmed cell death, which is characterized by excessive iron ion accumulation and lipid peroxidation.
View Article and Find Full Text PDFBackground: Palmitic acid (PA) has a lipotoxic effect on blood vessels, leading to endothelial dysfunction and cell death. The underlying mechanisms are not yet fully understood.
Aim: We sought to investigate the effects of PA on endothelial cells, with an emphasis on ferroptosis.
As increasing number of people migrated to high altitude, highland encephalopathy and hypoxia-induced cognitive impairment arouse public attention. Yet, its underlying mechanisms remain unclear. Emerging evidence has implied neuroinflammation and neuronal loss may be involved.
View Article and Find Full Text PDFBrain volume decrease in the anterior cingulate cortex (ACC) after lead (Pb) exposure has been linked to persistent impairment of attention behavior. However, the precise structural change and molecular mechanism for the Pb-induced ACC alteration and its contribution to inattention have yet to be fully characterized. The present study determined the role of miRNA regulated synaptic structural and functional impairment in the ACC and its relationship to attention deficit disorder in Pb exposed mice.
View Article and Find Full Text PDFIcariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS.
View Article and Find Full Text PDFNeurological disorders are often progressive and lead to disabilities with limited available therapies. Epidemiological evidence implicated that prolonged exposure to hypoxia leads to neurological damage and a plethora of complications. Neural stem cells (NSCs) are a promising tool for neurological damage therapy in terms of their unique properties.
View Article and Find Full Text PDFEndothelial dysfunction is commonly accompanied by a reduced capacity for nitric oxide (NO) production and decreased NO sensitivity, playing a central role in numerous vascular diseases. Saturated free fatty acids are known to reduce NO production and then induce endothelial dysfunction. Alternative splicing participates in the regulation of cellular and tissular homeostasis and is highly regulated by serine-arginine protein kinase (SRPK1).
View Article and Find Full Text PDFAims: Hypoxia causes plenty of pathologies in the central nervous system (CNS) including impairment of cognitive and memory function. Dehydroepiandrosterone (DHEA) has been proved to have therapeutic effects on CNS injuries by maintaining the homeostasis of synapses, yet its effect on hypoxia-induced CNS damage remains unknown.
Methods: In vivo and in vitro models were established.
J Environ Sci (China)
November 2022
Lead (Pb) and manganese (Mn) are common neurotoxins. However, individuals are subject to co-exposures in real life, and it is therefore important to study these metals in combination. Weaning Sprague-Dawley rats were given ad libitum access to drinking water solutions containing Pb (100 mg/L), Mn (2.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) contain thousands of proteins and nucleic acids, playing an important role in cell-cell communications. Sertoli cells have been essential in the testis as a "nurse cell". However, EVs derived from human Sertoli cells (HSerCs) have not been well investigated.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2022
Objective To investigate the protective effect and mechanism of berberine hydrochloride (BBR) on liver after acute hypoxic exposure. Methods C57BL/6 mice were divided into three groups consisting of normoxic group, hypoxic exposure group, and hypoxic exposure combined with BBR group. On the 7th day of the experiment, mice were sacrificed and liver tissue was collected.
View Article and Find Full Text PDFTesticular endothelial cells have been found to play an important role in spermatogenesis and fertility, but their mechanism is obscure. Exosomes released by various cells are recognized as cell-cell communication mediators during the initiation and progression of many diseases. Therefore, the current study aimed to investigate the protein and miRNA components of human testicular endothelial cell-derived exosomes (HTEC-Exos) and to explore their potential effects on spermatogenesis.
View Article and Find Full Text PDFBovine milk-derived extracellular vesicles (BM-EVs) are recognized as promising nanoscale delivery vectors owing to their large availability. However, few isolation methods can achieve high purity and yield simultaneously. Therefore, we developed a novel and cost-effective procedure to separate BM-EVs "salting-out.
View Article and Find Full Text PDFEnvironmental hypoxic hazard has increasingly become a global public health issue, with impelling evidences supporting the relation between hypoxia and cognitive disorders. As a potent stressor, hypoxia causes mitochondrial dysfunction with insufficient energy production, thus the formation of brain memory disorder. Yet, the underlying molecular mechanism/s against hypoxia induced injury have yet to be identified.
View Article and Find Full Text PDFBackground: To evaluate the efficacy and safety of aildenafil citrate in the treatment of erectile dysfunction (ED) in Chinese population.
Methods: A multicenter, randomized, double-blind, placebo-controlled, double-cycle crossover trial was conducted in three medical centers. Male patients with mild to moderate ED were randomized into two groups and received either aildenafil citrate or placebos, followed by a crossover administration after a 7-day washout.
Background: Icariside II (ICA II), an active flavonoid monomer, has been proven to restore post-prostatectomy erectile dysfunction in rats; however, the high cost of extraction from natural plants limits the application of ICA II.
Objective: To investigate the therapeutic effect and possible mechanism of action of YS-10, a new flavonoid compound, which was designed and synthesized based on the structure of ICA II in a rat model in of cavernous nerve injury.
Materials/methods: Eight of 32 adult male Sprague-Dawley rats were selected as the normal control (NC) group and received vehicle treatment.
Transl Androl Urol
April 2020
With the continuous integration and intersection of life sciences, engineering and physics, the application for micro-energy in the basic and clinical research of regenerative medicine (RM) has made great progress. As a key target in the field of RM, stem cells have been widely used in the studies of regeneration. Recent studies have shown that micro-energy can regulate the biological behavior of stem cells to repair and regenerate injured organs and tissues by mechanical stimulation with appropriate intensity.
View Article and Find Full Text PDFThis study aimed to compare the effects of bilateral cavernous nerve crushing (BCNC) and bilateral cavernous nerve resection (BCNR) on intracavernous pressure (ICP) and cavernous pathology in rats and to explore the optimal treatment time for the BCNC and BCNR models. Seventy-two male rats aged 12 weeks were randomly divided into three equal groups: Sham (both cavernous nerves exposed only), BCNC (BCN crushed for 2 min), and BCNR (5 mm of BCN resected). Erectile function was then measured at 1 week, 3 weeks, and 5 weeks after nerve injury, and penile tissues were harvested for histological and molecular analyses by immunohistochemistry, immunofluorescence, Western blot, and cytokine array.
View Article and Find Full Text PDF