Publications by authors named "Ruijin Wang"

This review presents a concise overview of RF (radio frequency) power transistor behavior models, which is crucial for optimizing RF performance in high-frequency applications like wireless communication, radar, and satellites. The paper highlights the significance of accurate modeling in understanding transistor behavior and traces the evolution of behavior modeling techniques. Different behavior modeling strategies, such as LUT (look-up table) based models, polynomial equation-based models, and machine learning based models, are discussed along with their unique characteristics and modeling challenges.

View Article and Find Full Text PDF

The liquid cooling system of lithium battery modules (LBM) directly affects the safety, efficiency, and operational cost of lithium-ion batteries. To meet the requirements raised by a factory for the lithium battery module (LBM), a liquid cooling plate with a two-layer minichannel heat sink has been proposed to maintain temperature uniformity in the module and ensure it stays within the temperature limit. This innovative design features a single inlet and a single outlet.

View Article and Find Full Text PDF

The performance of the calorimetric microflow sensor is closely related to the thermal sensing part design, including structure parameter, heater temperature, and operation environment. In this paper, several measures to enhance the performance of the calorimetric microflow sensor were proposed and further verified by numerical simulations. The results demonstrate that it is more favorable to reduce the negative impact of flow separation as the space between detectors and heater is set to be 1.

View Article and Find Full Text PDF

Heterogeneous integration (HI) is a rapidly developing field aimed at achieving high-density integration and miniaturization of devices for complex practical radio frequency (RF) applications. In this study, we present the design and implementation of two 3 dB directional couplers utilizing the broadside-coupling mechanism and silicon-based integrated passive device (IPD) technology. The type A coupler incorporates a defect ground structure (DGS) to enhance coupling, while type B employs wiggly-coupled lines to improve directivity.

View Article and Find Full Text PDF

Deep neural networks are enjoying unprecedented attention and success in recent years. However, catastrophic forgetting undermines the performance of deep models when the training data are arrived sequentially in an online multi-task learning fashion. To address this issue, we propose a novel method named continual learning with declarative memory (CLDM) in this paper.

View Article and Find Full Text PDF

Serine/arginine-rich (SR) proteins are well known as splicing factors in humans, model animals and plants. However, they are largely unknown in regulating pre-mRNA splicing of filamentous fungi. Here we report that the SR protein MoSrp1 enhances and suppresses alternative splicing in a model fungal plant pathogen Magnaporthe oryzae.

View Article and Find Full Text PDF

Heat-transfer enhancement in microchannel heat sinks (MCHS) has been a hot topic in the last decade. However, most published works did not focus on the heat sources that are discrete, as in most microelectronic devices, and the enhancement of heat and mass transfer (HMT) due to the Soret and Dufour effects being ignored. Based on a heterogeneous two-phase model that takes into consideration the Soret and Dufour effects, numerical simulations have been performed for various geometries and heat sources.

View Article and Find Full Text PDF

The Internet of Medical Things (IoMT) is an important application of the Internet of Things in health care. In IoMT, efficiency and user privacy are crucial for cloud storage and retrieval of healthcare data documents. Existing schemes, however, often suffer from inefficient retrieval and increased risk of privacy disclosure when dealing with massive data.

View Article and Find Full Text PDF

The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems [...

View Article and Find Full Text PDF

Edge intelligent computing is widely used in the fields, such as the Internet of Medical Things (IoMT), which has advantages, including high data processing efficiency, strong real-time performance and low network delay. However, there are many problems including privacy disclosure, limited calculation force, as well as scheduling and coordination issues. Federated learning can greatly improves training efficiency.

View Article and Find Full Text PDF

Piezoelectric actuators are widely used in the field of micro- and nanopositioning due to their high frequency response, high stiffness, and high resolution. However, piezoelectric actuators have hysteresis nonlinearity, which severely affects their positioning accuracy. As the driving frequency increases, the performance of piezoelectric actuators further degrades.

View Article and Find Full Text PDF

Three-dimensional printing polyetheretherketone (PEEK) provides a new choice for dental prostheses, while its appropriate bonding procedure and adhesive performance are still unclear. This study aimed to investigate the adhesive performance of printed polyetheretherketone (PEEK) after acid etching to veneering resin. In total, 182 PEEK specimens (including 91 printed and 91 milled specimens) were distributed to 14 subgroups ( = 13/subgroup), according to the manufacturing process and surface treatment.

View Article and Find Full Text PDF

Calculation of the thermal conductivity of nanofluids by molecular dynamics (MD) is very common. Regrettably, general MD can only be employed to simulate small systems due to the huge computation workload. Instead, the computation workload can be considerably reduced due to the coarse-grained fluid when multiparticle collision dynamics (MPCD) is employed.

View Article and Find Full Text PDF

Plant fungal pathogens secrete numerous proteins into the apoplast at the plant-fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins.

View Article and Find Full Text PDF

The splicing factor Cwf15 is an essential component of the Prp19-associated component of the spliceosome and regulates intron splicing in several model species, including yeasts and human cells. However, the roles of Cwf15 remain unexplored in plant pathogenic fungi. Here, we report that MoCWF15 in the rice blast fungus Magnaporthe oryzae is non-essential to viability and important to fungal virulence, growth and conidiation.

View Article and Find Full Text PDF

The digital fabrication of a maxillary obturator with a 3D-printed polyetheretherketone (PEEK) framework is described. Digital oral data were scanned for the computer-aided design (CAD) of the framework and the 3D printing of a preliminary resin cast. The framework was accurately printed from a PEEK filament material.

View Article and Find Full Text PDF

Piezoelectric actuators are widely used in micro- and nano-manufacturing and precision machining due to their superior performance. However, there are complex hysteresis nonlinear phenomena in piezoelectric actuators. In particular, the inherent hysteresis can be affected by the input frequency, and it sometimes exhibits asymmetrical characteristic.

View Article and Find Full Text PDF

Nanofluids are considered to be a next-generation heat transfer medium due to their excellent thermal performance. To investigate the effect of electric fields and magnetic fields on heat transfer of nanofluids, this paper analyzes the mechanism of thermal conductivity enhancement of nanofluids, the chaotic convection and the heat transfer enhancement of nanofluids in the presence of an applied electric field or magnetic field through the method of literature review. The studies we searched showed that applied electric field and magnetic field can significantly affect the heat transfer performance of nanofluids, although there are still many different opinions about the effect and mechanism of heat transfer.

View Article and Find Full Text PDF

The sizes of most prokaryotic cells are several microns. It is very difficult to separate cells with similar sizes. A sorter with a contraction-expansion microchannel and applied magnetic field is designed to sort microparticles with diameters of 3, 4 and 5 microns.

View Article and Find Full Text PDF

Because of fast frequency response, high stiffness, and displacement resolution, the piezoelectric actuators (PEAs) are widely used in micro/nano driving field. However, the hysteresis nonlinearity behavior of the PEAs affects seriously the further improvement of manufacturing accuracy. In this paper, we focus on the modeling of asymmetric hysteresis behavior and compensation of PEAs.

View Article and Find Full Text PDF

The evaporation behaviors of droplet containing nanoparticles play an important role in nanofluid combustion, spray drying, and so on. The average evaporation rate of a nanofluid droplet will decrease sharply at the end stage of droplet evaporation because the aggregation of nanoparticles on the surface of the droplet results in a shell. To illustrate the microscopic mechanism for the variation of the average evaporation rate and surface tension caused by the copper nanoparticles on the surface of the water droplet, numerical simulations based on the Brownian dynamics are conducted to study the effects of nanoparticle behaviors on the average evaporation rate and surface tension for various initial volume fractions and various distributions of nanoparticles.

View Article and Find Full Text PDF

More efficient heat sinks are required due to the rapid increase of power density in microelectronic devices. In this study, a micro-array heat sink with stagger trapezoidal bumps was designed. Numerical simulations for the flow and heat transfer under various conditions were carried out to help us to fully understand the mechanisms of the heat transfer enhancement in such a heat sink.

View Article and Find Full Text PDF

It is crucial to control the temperature of solar cells for enhancing efficiency with the increasing power intensity of multiple photovoltaic systems. In order to improve the heat transfer efficiency, a microchannel heat sink (MCHS) with V-ribs using a water-based nanofluid as a coolant for micro solar cells was designed. Numerical simulations were carried out to investigate the flows and heat transfers in the MCHS when the Reynolds number ranges from 200 to 1000.

View Article and Find Full Text PDF

The effect of chitin nanoparticles on surface behavior of lipid systems containing dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) is studied by surface pressure (π)-area (A) isotherms, polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS), Brewster angle microscopy (BAM). The variation of surface behavior of DPPC/DPPG monolayers is induced mainly by electrostatic interactions between nanoparticles and head groups of phospholipids. At lower surface pressure, nanoparticles can penetrate into the monolayers and the positive charges carried by nanoparticles benefits the enrichment of phospholipid molecules at surface, which not only increases the mean molecular area but also hinders the formation of phospholipid liquid-condensed (LC) phase.

View Article and Find Full Text PDF