Publications by authors named "Ruihui Gan"

The large-scale application of rechargeable Zn-air batteries (ZABs) necessitates the development of high-efficiency and cost-effective bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, the density functional theory calculations were performed to reveal the charge redistribution induced by the Co/CoO heterojunction integrating with N-doped carbon, which could optimize the d-band center, thereby accelerating O transformed into OOH* in the ORR and the conversion of O* into OOH* in OER. Guided by theoretical calculations, Co/CoO hetero-nanoparticles-decorated lignin-derived N-doped porous carbon nanofibers (Co-LCFs-800) were synthesized to use as an advanced self-supported bifunctional oxygen electrocatalyst.

View Article and Find Full Text PDF
Article Synopsis
  • Commercial lithium-ion batteries are nearing their maximum energy capacity, falling short of increasing storage needs, which has led to interest in lithium-sulfur (Li-S) batteries due to their superior energy capacity and density.
  • Li-S batteries face hurdles like poor conductivity, expansion of sulfur, and the shuttle effect, which affect their practical use.
  • Electrospun carbon-based nanofibers are proposed as a solution, offering unique structural benefits and flexibility, and this review discusses their role in enhancing Li-S battery performance while addressing current challenges and future prospects.
View Article and Find Full Text PDF

Transition metal single-atom catalysts (SACs) have been regarded as possible alternatives to platinum-based materials due to their satisfactory performance of the oxygen reduction reaction (ORR). By contrast, main-group metal elements are rarely studied due to their unfavorable surface and electronic states. Herein, a main-group Sn-based SAC with penta-coordinated and asymmetric first-shell ligands is reported as an efficient and robust ORR catalyst.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage. However, the notorious lithium polysulfides (LiPSs) shuttle effect and torpid redox kinetics hinder their practical application. Enhancing phase conversion efficiency and limiting the dissolution of LiPSs are critical for stabilizing Li-S batteries.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session69g7kpef02tfkqj6cmikt1r1pjtd3r64): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once