Chiral lead halide perovskites (chiral LHPs) have emerged as one of the best candidates for opto-spintronics due to their large spin-orbit coupling (SOC) and unique chirality-induced spin selectivity (CISS) even in the absence of a magnetic field. Here, we report the impact of halide composition on circular dichroism (CD) and magneto-photoluminescence (PL) effects of chiral 2D LHPs (/-MBA)PbBrI (MBA = CHCH(CH)NH). By tuning the mixing ratio of Br/I halide anions, we find that (/-MBA)PbBrI thin films exhibit tunable and wide wavelength range CD signals.
View Article and Find Full Text PDFAn efficient reverse intersystem crossing (RISC) process in thermally activated delayed fluorescence (TADF) material is a common way to obtain high-performance organic light-emitting diodes (OLEDs), but the physical mechanism for the spin flipping of the RISC remains vague. Here, using magneto-electroluminescence (MEL) as an effective tool, we found that the RISC (CT → CT) from a triplet charge transfer (CT) to the singlet charge transfer (CT) state is decided by spin-orbit coupling (SOC) in metal-free OLEDs based on a typical TADF emitter DMAC-TRZ. By fitting and analyzing the current and concentration-dependent MEL data, it is found that the characteristic magnetic field of the SOC-induced RISC process is approximately 65-85 mT, which is obviously larger than that (several mT) of the hyperfine-interaction-induced RISC process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Chiral lead halide perovskites (LHPs) have been widely investigated in chiroptical spintronics due to their significant Rashba spin-orbit coupling (SOC) and chiral-induced spin selectivity (CISS). Ferromagnet/LHP spinterface stems from the orbital hybridization at the interface of the ferromagnet and the nonmagnetic semiconductor, where interfacial density of state is spin-dependent. By far, the impact of the ferromagnet/chiral LHP spinterface on magneto-photoluminescence (Magneto-PL) of chiral LHPs remains unknown.
View Article and Find Full Text PDFLow-temperature solution-made chiral lead halide perovskites (LHPs) have spontaneous Bychkov-Rashba spin orbit coupling (SOC) and chiral-induced spin selectivity (CISS) qualities. Their coexistence may give rise to considerable spin and charge conversion capabilities for spin-orbitronic applications. In this study, we demonstrate the spin-photogalvanic effect for (-MBA)PbI and (-MBA)PbI polycrystalline film-based lateral devices (100 μm channel length).
View Article and Find Full Text PDFThe introduction of chiral organic ligands into hybrid organic-inorganic perovskites (HOIPs) results in chiral perovskites, which exhibit natural optical activities (NOAs) such as circularly polarized luminescence (CPL). CPL can be observed in achiral HOIPs under a magnetic field as well. Here, we systematically study the temperature- and magnetic field-dependence of both circular polarization and total intensity in chiral HOIPs.
View Article and Find Full Text PDFUsing the fingerprint magneto-electroluminescence trace, we observe a fascinating high-level reverse intersystem crossing (HL-RISC) in rubrene-doped organic light-emitting diodes (OLEDs). This HL-RISC is achieved from high-lying triplet states (T) transferred from host triplet states by the Dexter energy transfer to the lowest singlet states (S) in rubrene. Although HL-RISC decreases with bias current, it increases with lowering temperature.
View Article and Find Full Text PDFThe thermally activated delayed fluorescence (TADF) material 2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene (4CzTPN-Ph) and the conventional fluorescent dopant 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were used to co-dope the host material 4,4'-bis(carbazol-9-yl)biphenyl (CBP) for the fabrication of TADF-assisted fluorescent organic light-emitting diodes (OLEDs). Some exceptional magnetic field effect (MFE) curves with abundant structures and four tunable components within a low magnetic field range (≤50 mT) were obtained, in sharp contrast to the maximum of two components observed in typical OLEDs. These MFE components were easily tuned by the injection current, dopant concentration, working temperature, and dopant energy gap, leading to a wide variety of MFE curve line shapes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Singlet fission is usually the only reaction channel for excited states in rubrene-based organic light-emitting diodes (OLEDs) at ambient temperature. Intriguingly, we discover that triplet fusion (TF) and intersystem crossing (ISC) within rubrene-based devices begin at moderate and high current densities (j), respectively. Both processes enhance with decreasing temperature.
View Article and Find Full Text PDF