Publications by authors named "Ruihan Bai"

A major goal of polydimethylsiloxane (PDMS) microfabrication is to develop a simple and inexpensive method for rapid fabrication. Despite the recent advancements in this field, facile PDMS microfabrication on non-planar surfaces remains elusive. Here we report a facile method for rapid prototyping of PDMS microdevices viaPLAT (microscale plasma-activated templating) on non-planar surfaces through micropatterning of hydrophilic/hydrophobic (HL/HB) interface by flexible polyvinyl chloride (PVC) hollow-out mask.

View Article and Find Full Text PDF

Despite rapid progresses in single-cell analysis technologies, efforts to control the three-dimensional microenvironment for single cell measurements have been lacking. Here, we report a simple method to incorporate three-dimensional scaffolds, including polyvinylidene fluoride (PVDF) membranes and PVDF membrane replicated analog polydimethylsiloxane, into multiplexed single cell secretomic analysis platforms (including a microwell array and a single cell barcode microchip) to mimic the extracellular physical matrix and mechanical support for single cells. Applying this platform to brain tumor cell line U87 to investigate single cell protein secretion behavior on different substrates, we revealed that single cell protein secretions were regulated differently in three-dimensional (3D) microenvironments.

View Article and Find Full Text PDF

In this study, a novel mesoporous silica nanoparticles incorporated chiral hybrid monolithic stationary phase was developed. The stationary phase was firstly prepared by an in situ copolymerization of amino-modified mesoporous silica nanoparticles (NH-MSN), glycidyl methacrylate (GMA), and ethylene dimethacrylate (EDMA) and then functionalized with pepsin as chiral selector. The incorporated mesoporous silica nanoparticles provided additional interactions sites, and in turn yielded different enantioselectivity thus enhancing the overall separation.

View Article and Find Full Text PDF

Carboxylated single-walled carbon nanotubes (c-SWNTs) were incorporated into poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EDMA)] monoliths to develop a novel monolithic stationary phase for capillary electrochromatography. The prepared monoliths were characterized by scanning electron microscopy and nitrogen adsorption. Additionally, pepsin, which is a chiral selector, was bonded to the c-SWNT-incorporated monoliths via epoxide groups as reactive sites and glutaraldehyde as the spacer.

View Article and Find Full Text PDF

Novel graphene oxide (GO)-modified affinity capillary monoliths were developed employing human serum albumin (HSA) or pepsin as chiral selector. Three types of amino donors for GO immobilization, including ammonium hydroxide (NH4OH), ethanediamine (EDA) and polyethyleneimine (PEI), were applied to explore the effect of spacer arm on enantioseparation. It was observed that HSA-GO-EDA-based affinity capillary monoliths exhibited better chiral recognition ability in comparison with the other two spacer-based monoliths.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn5c6hqlq0m95pg90pavf69r2e7qn3he6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once