J Environ Manage
August 2024
Understanding how hydraulic cues in the barrier environment affect fish navigation is critical to fish migration in dammed rivers. However, most of the current research on the effects of hydraulic cues on fish navigation focuses on the effects of a single hydraulic parameter on fish migration and usually ignores fish sensory perception and swimming ability. This study presents an effective approach that combines a computational fluid dynamics model of a river with a model of fish behaviour to elucidate the effects of hydraulic cues in the barrier environment on fish migration paths and strategies by simulating the fish's perception of flow direction and their regulation of multiple hydraulic parameters.
View Article and Find Full Text PDFSpatially heterogeneous turbulent flow refers to nonuniform flow with coexisting multiple flow velocities, which is widely distributed in fish natural or husbandry environments, and its hydraulic parameters affect fish swimming behavior. In this study, a complex hydrodynamic environment with three flow velocity regions (low, medium, and high) coexisting in an open-channel flume was designed to explore volitional swimming ability, the spatial-temporal distribution of fish swimming trajectories, and the range of preferred hydrodynamic parameters of individual and schooling (three fish). The results showed that the swimming speed of individual fish during upstream migration was significantly higher than that of fish schools ( < 0.
View Article and Find Full Text PDFEcological regulation is an important means of reservoir adaptive management, but its effective evaluation faces two major difficulties: the response mechanism of fish spawning behavior is not completely clear, and how to establish a feedback regulation relationship of hydrological processes to improve the river environment is unknown. Based on a long-term series of early fish resources, hydrology, water temperature, and meteorology data, this research clarifies the fish spawning habitat requirements in the power station regulation environment, determines a habitat suitability evaluation index system and evaluation criteria, reveals the temporal and spatial variation characteristics of fish habitat suitability under power station regulation based on the fuzzy logic method, provides feedback to the existing regulation scheme, and proposes suggestions for sustainable adaptive management of the reservoir. The temporal and spatial variation characteristics of the spawning river sections habitat suitability are the comprehensive differences among multiple objectives and factors.
View Article and Find Full Text PDFEffective fishway design requires knowledge of fish swimming behavior in streams and channels. Appropriate tests with near-natural flow conditions are required to assess the interaction between fish behavior and turbulent flows. In this study, the volitional swimming behavior of S.
View Article and Find Full Text PDFFish that require migration are often diverse in the dam-built river, and some of them are benthic. For fish to pass efficiently across the dams, it is necessary to identify the swimming corridors and possible cluster areas of the target fish. However, previous studies have only predicted the two-dimensional swimming corridors of a single species.
View Article and Find Full Text PDFCities in southwestern China experience urban drainage and overflow pollution after extreme rainfall events, which are major problems. In this study, a type of stepped spillway dropshaft suitable for drainage by deep tunnels in Chengdu was proposed and the hydraulic characteristics were investigated experimentally. The results showed that the nappe flow and strong turbulent deflected jet flow in the stepped spillway allowed the dropshaft to greatly dissipate energy.
View Article and Find Full Text PDFThe current hydroponic experiment investigated differences in the uptake, physiological response and defence mechanisms of Hydrilla verticillata (L.f.) Royle in response to three representative toxic heavy metals.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2019
The effects of hydrodynamics on algae growth have received considerable attention, and flow velocity is one of the most frequently discussed factors. For , which aggregates resources and is highly resistant to environmental changes, the mechanism underlying the impact of flow velocity on its growth is poorly understood. Experiments were conducted to examine the response of algae growth to different velocities, and several enzymes were tested to determine their physiological mechanisms.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2019
Dam-break flooding is a potential hazard for reservoirs that poses a considerable threat to human lives and property in downstream areas. Assessing the dam-break flood risk of the Zipingpu Reservoir in Chengdu, Sichuan Province, China, is critically important because this reservoir is located on the Longmen Shan fault, which experiences high seismic activity. In this paper, we develop an approach based on the protected object for dam-break flood risk management.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2019
Water resource regulation is convenient for humans, but also changes river hydrology and affects aquatic ecosystems. This study combined a field investigation and two-dimensional hydrodynamic model (MIKE21) to simulate the hydrodynamic distribution from 1 March to 30 April of 2008-2013 and establish the HDI (habitat depth suitability index) and HVI (habitat velocity suitability index) based on static hydraulic conditions at typical points. Additionally, by using MIKE21 to simulate the hydraulic state in the study area under 20 flow conditions from 530-1060 m/s, and combining these states with the HCI (habitat cover type suitability index), HDI, and HVI, we simulated the WUA (weighted usable area) and habitat connectivity under different runoff regulation scenarios to study the water requirements of during the spawning period in the Yanni wetland.
View Article and Find Full Text PDFAttracting fish at fishway entrances is vital for ensuring fish passage efficiency, which requires consideration of the swimming characteristics of fish. The objective of this case study was to propose optimized flow conditions downstream of a dam on the Tibetan Plateau to attract fish into fishways. Six local endemic species of Cyprinidae: Schizothoracinae were considered as protection targets.
View Article and Find Full Text PDFSpillway water falling from hydroelectric power plant dams in the upper Yangtze River creates a high pressure in plunge pools below the dams allowing gasses to be dissolved at high rates. The resulting supersaturation persists many miles downstream the dam which may elicit mortality in river fishes associated with gas bubble disease (GBD). We have in a two-year study (2014-15) evaluated the effect of water depth on development of GBD in an endemic and endangered fish species, the Chinese sucker Myxocyprinus asiaticus, 24 km downstream of Xiangjaiba dam.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2018
L. and (L.f.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2018
To address the species decline in aboriginal fish in the Yarlung Tsangpo River Basin and the lack of research on the habitat characteristics of fish spawning grounds, this paper studied the changing trends in runoff in spawning grounds and the habitat conditions characteristics of during the spawning period. In conventional approaches, inaccurate statistical results are obtained when a full river section is taken as the region to be assessed, so a new method for determining the statistical boundaries of characteristic indexes was proposed. By combining hydrological analyses, mathematical statistics, and numerical simulations, the statistical boundary of the index was determined, and a suitable range for the habitat characteristic indexes for the spawning field was finally obtained.
View Article and Find Full Text PDFTotal dissolved gas (TDG) supersaturation has been identified as one of the possible negative environmental effects of the construction of dams in the upper Yangtze River. Juvenile Chinese sucker and Prenant's schizothoracin fish were selected to evaluate the impact of TDG supersaturation on the swimming performance of fish in the Upper Yangtze River. The critical swimming speeds (U) of Chinese sucker were 4.
View Article and Find Full Text PDF