Accurate whole-cell segmentation is essential in various biomedical applications, particularly in studying the tumor microenvironment. Despite advancements in machine learning for nuclei segmentation in hematoxylin and eosin (H&E)-stained images, there remains a need for effective whole-cell segmentation methods. This study aimed to develop a deep learning-based pipeline to automatically segment cells in H&E-stained tissues, thereby advancing the capabilities of pathological image analysis.
View Article and Find Full Text PDFBrief Bioinform
September 2024
Bioengineering (Basel)
July 2024
Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data.
View Article and Find Full Text PDFExisting natural language processing (NLP) methods to convert free-text clinical notes into structured data often require problem-specific annotations and model training. This study aims to evaluate ChatGPT's capacity to extract information from free-text medical notes efficiently and comprehensively. We developed a large language model (LLM)-based workflow, utilizing systems engineering methodology and spiral "prompt engineering" process, leveraging OpenAI's API for batch querying ChatGPT.
View Article and Find Full Text PDFRecent advancements in tissue imaging techniques have facilitated the visualization and identification of various cell types within physiological and pathological contexts. Despite the emergence of cell-cell interaction studies, there is a lack of methods for evaluating individual spatial interactions. In this study, we introduce Ceograph, a cell spatial organization-based graph convolutional network designed to analyze cell spatial organization (for example,.
View Article and Find Full Text PDFImmunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region.
View Article and Find Full Text PDFBackground And Objective: Unsupervised domain adaptation (UDA) is a powerful approach in tackling domain discrepancies and reducing the burden of laborious and error-prone pixel-level annotations for instance segmentation. However, the domain adaptation strategies utilized in previous instance segmentation models pool all the labeled/detected instances together to train the instance-level GAN discriminator, which neglects the differences among multiple instance categories. Such pooling prevents UDA instance segmentation models from learning categorical correspondence between source and target domains for accurate instance classification; METHODS: To tackle this challenge, we propose an Instance Segmentation CycleGAN (ISC-GAN) algorithm for UDA multiclass-instance segmentation.
View Article and Find Full Text PDFMotivation: Spatial transcriptomics (ST) enables a high-resolution interrogation of molecular characteristics within specific spatial contexts and tissue morphology. Despite its potential, visualization of ST data is a challenging task due to the complexities in handling, sharing and visualizing large image datasets together with molecular information.
Results: We introduce ScopeViewer, a browser-based software designed to overcome these challenges.
Recent advancements in tissue imaging techniques have facilitated the visualization and identification of various cell types within physiological and pathological contexts. Despite the emergence of cell-cell interaction studies, there is a lack of methods for evaluating individual spatial interactions. In this study, we introduce Ceograph, a novel cell spatial organization-based graph convolutional network designed to analyze cell spatial organization (i.
View Article and Find Full Text PDFBackground: Tissues such as the liver lobule, kidney nephron, and intestinal gland exhibit intricate patterns of zonated gene expression corresponding to distinct cell types and functions. To quantitatively understand zonation, it is important to measure cellular or genetic features as a function of position along a zonal axis. While it is possible to manually count, characterize, and locate features in relation to the zonal axis, it is labor-intensive and difficult to do manually while maintaining precision and accuracy.
View Article and Find Full Text PDFPolyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice.
View Article and Find Full Text PDFMicroscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution.
View Article and Find Full Text PDFWhole slide imaging is becoming a routine procedure in clinical diagnosis. Advanced image analysis techniques have been developed to assist pathologists in disease diagnosis, staging, subtype classification, and risk stratification. Recently, deep learning algorithms have achieved state-of-the-art performances in various imaging analysis tasks, including tumor region segmentation, nuclei detection, and disease classification.
View Article and Find Full Text PDFTyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections.
View Article and Find Full Text PDFHuman microbiome consists of trillions of microorganisms. Microbiota can modulate the host physiology through molecule and metabolite interactions. Integrating microbiome and metabolomics data have the potential to predict different diseases more accurately.
View Article and Find Full Text PDFBackground: Trillions of microbes inhabit the human body and have a profound effect on human health. The recent development of metagenome-wide association studies and other quantitative analysis methods accelerate the discovery of the associations between human microbiome and diseases. To assess the strengths and limitations of these analytical tools, simulating realistic microbiome datasets is critically important.
View Article and Find Full Text PDFThis study aims to develop an artificial intelligence (AI)-based model to assist radiologists in pneumoconiosis screening and staging using chest radiographs. The model, based on chest radiographs, was developed using a training cohort and validated using an independent test cohort. Every image in the training and test datasets were labeled by experienced radiologists in a double-blinded fashion.
View Article and Find Full Text PDFObjective: To provide an open-source software package for determining temporal correlations between disease states using longitudinal electronic medical records (EMR).
Materials And Methods: We have developed an -based package, Disease Correlation Network (DCN), which builds retrospective matched cohorts from longitudinal medical records to assess for significant temporal correlations between diseases using two independent methodologies: Cox proportional hazards regression and random forest survival analysis. This optimizable package has the potential to control for relevant confounding factors such as age, gender, and other demographic and medical characteristics.
Malignant melanoma is one of the leading cancers around the world. It is critical to timely diagnose and treat melanoma to improve patient survival. This paper proposes a deep learning model C-UNet for skin lesion segmentation.
View Article and Find Full Text PDFThe spatial organization of different types of cells in tumor tissues reveals important information about the tumor microenvironment (TME). To facilitate the study of cellular spatial organization and interactions, we developed Histology-based Digital-Staining, a deep learning-based computation model, to segment the nuclei of tumor, stroma, lymphocyte, macrophage, karyorrhexis, and red blood cells from standard hematoxylin and eosin-stained pathology images in lung adenocarcinoma. Using this tool, we identified and classified cell nuclei and extracted 48 cell spatial organization-related features that characterize the TME.
View Article and Find Full Text PDFObjective: Accurate diagnosis and prognosis are essential in lung cancer treatment selection and planning. With the rapid advance of medical imaging technology, whole slide imaging (WSI) in pathology is becoming a routine clinical procedure. An interplay of needs and challenges exists for computer-aided diagnosis based on accurate and efficient analysis of pathology images.
View Article and Find Full Text PDFWith the rapid development of image scanning techniques and visualization software, whole slide imaging (WSI) is becoming a routine diagnostic method. Accelerating clinical diagnosis from pathology images and automating image analysis efficiently and accurately remain significant challenges. Recently, deep learning algorithms have shown great promise in pathology image analysis, such as in tumor region identification, metastasis detection, and patient prognosis.
View Article and Find Full Text PDF