Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a modeling approach, we further investigate the sources of atmospheric Hg in the central Arctic. Simulations with a generalized additive model (GAM) show that long-range transport of anthropogenic and terrestrial Hg from lower latitudes is a minor contribution (~2%), and more than 50% of the explained GEM variability is caused by oceanic evasion.
View Article and Find Full Text PDFThe Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ω) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale.
View Article and Find Full Text PDFSci Total Environ
December 2022
Polycyclic aromatic hydrocarbons (PAHs) are traditionally considered to enter the Arctic Ocean through long-range transport. Arctic warming, especially sea ice retreat, will certainly increase the contribution from local source (such as river input and ice melting). However, this hypothesis remains poorly constrained for lack of quantitative evidence.
View Article and Find Full Text PDFMicroplastics (MPs) in the Arctic have raised increasing concern, but knowledge on MP contamination in benthic organisms from Arctic shelf regions, e.g., the Chukchi Sea is still limited.
View Article and Find Full Text PDFSnow depth and sea ice thickness in the Polar Regions are significant indicators of climate change and have been measured over several decades by ice-tethered buoys. However, sea ice temperature profiles measured by ice-tethered buoys are rarely used to infer snow depth and sea ice thickness owing to the lack of automatic discrimination algorithms, restricting the use of the data for sea ice thermodynamics studies. In this study, snow depth and sea ice thickness were retrieved through the measurements of sea ice temperature profiles using discrimination algorithms of the change point and the maximum likelihood detection methods.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
April 2012
Sea ice in the Arctic Ocean plays an important role in the global climate change, and its quick change and impact are the scientists' focus all over the world. The spectra of different kinds of sea ice were measured with portable ASD FieldSpec 3 spectrometer during the long-term ice station of the 4th Chinese national Arctic Expedition in 2010, and the spectral features were analyzed systematically. The results indicated that the reflectance of sea ice covered by snow is the highest one, naked sea ice the second, and melted sea ice the lowest.
View Article and Find Full Text PDFBiological nutrient removal (BNR) was investigated in a sequencing batch membrane bioreactor which used carriers instead of activated sludge named a sequencing batch moving bed membrane bioreactor (SBMBMBR). The SBMBMBR performed well on carbon and nitrogen removal at different COD/TN ratios. COD, TN and ammonium nitrogen removal efficiencies averaged at 93.
View Article and Find Full Text PDFA membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated to minimize the effect of suspended solids on membrane fouling. The MBMBR and a conventional membrane bioreactor (CMBR) were operated in parallel for about two months. Unexpectedly, the rate of membrane fouling in MBMBR was about three times of that in CMBR.
View Article and Find Full Text PDFA membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.
View Article and Find Full Text PDF