Publications by authors named "Ruibing Yan"

The extensive conversion of coastal wetlands into agricultural and aquaculture areas has significant repercussions on soil nutrient balance. However, how coastal conversion specifically influences the dynamics and stoichiometry of topsoil carbon (C), nitrogen (N), and phosphorus (P) remains limited due to the considerable spatial variability and a lack of comprehensive field data. Here, we investigated the concentration and distribution of total C (TC), N (TN) and P (TP), along with their stoichiometric balance in four distinct coastal landscapes, including natural marshes and tidal flats, as well as converted agricultural croplands and ponds.

View Article and Find Full Text PDF

Vegetation restoration exerts transformative effects on nutrient cycling, microbial communities, and ecosystem functions. While extensive research has been conducted on the significance of mangroves and their restoration efforts, the effectiveness of mangrove restoration in enhancing soil multifunctionality in degraded coastal wetlands remains unclear. Herein, we carried out a field experiment to explore the impacts of mangrove restoration and its chronosequence on soil microbial communities, keystone species, and soil multifunctionality, using unrestored aquaculture ponds as controls.

View Article and Find Full Text PDF

Coastal wetlands have experienced considerable loss and degradation globally. However, how coastal degradation regulates sediment phosphorus (P) transformation and its underlying mechanisms remain largely unknown in subtropical coastal ecosystems. This study conducted seasonal field measurements using high-resolution diffusive gradient in thin films (DGT) and dialysis (Peeper) techniques, as well as a DGT-induced fluxes in sediments (DIFS) model, to evaluate the mobilization and diffusion of P along a degradation gradient ranging from pristine wetlands to moderately and severely degraded sites.

View Article and Find Full Text PDF

Accelerated marsh erosion caused by climate change and human activity may have important implications for nutrient cycling and availability. However, how erosion affects phosphorus (P) transformation and microbial function in subtropical coastal marshes remains largely unknown. Here we assessed soil P fractions, availability and the phoD-harboring bacterial community along a marsh erosion gradient (non-eroded, lightly eroded, and heavily eroded).

View Article and Find Full Text PDF

The reclamation of wetlands and its subsequent conversion to aquaculture may alter regional nutrient (im)mobilization and cycling, although direct assessments of phosphorus (P) cycling and its budget balance following wetland conversion are currently scarce. Here, parallel field experiments were conducted to investigate and compare the availability and mobilization mechanisms of P from natural coastal wetlands and the adjacent converted aquaculture ponds based on high-resolution diffusive gradient in thin films (DGT) and dialysis (HR-Peeper) techniques and the DGT-induced fluxes in sediments (DIFS) model. The study found that the conversion of wetland to pond strongly reduced the sediment P pool by changing its forms and distribution.

View Article and Find Full Text PDF

Reclamation and conversion of wetlands strongly affect nutrient cycling and ecosystem functions, while little attention has been paid to the effects of converting coastal wetland to aquaculture on the cycling and balance of soil phosphorus (P). Herein, we investigated soil P fractions, alkaline phosphatase (ALP) activity, and associated microbial properties following coastal wetland conversion in subtropical China. Soil P availability (especially resin-P) concentration and ALP activity in wetland were significantly higher than those in pond.

View Article and Find Full Text PDF

Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland.

View Article and Find Full Text PDF

Estuarine wetlands, which typically store large amounts of phosphorus (P), are experiencing increased salinity as well as changed environmental factors caused by rising sea levels. In this study, the seasonal dynamics of P speciation, availability, and biogeochemical couplings with iron (Fe)-sulfur (S) in soil and porewater were measured in a low-salinity estuarine wetland using in situ high-resolution diffusive gradients in thin films (DGT) and dialysis (HR-Peeper) techniques. The diffusion kinetics and resupply capacity of P from the soil phase to solution were simulated using a DGT-induced fluxes in soils (DIFS) model.

View Article and Find Full Text PDF

Wetland type plays an important role in controlling the phosphorus (P) biogeochemical cycle, while its effect on labile P dynamics and coupling with iron (Fe) and sulfur (S) in coastal wetlands remains unclear. In this study, chemical sequential extraction and high-resolution diffusive gradients in thin-film (DGT) techniques were employed to investigate P forms, mobilization, and labile Fe-S-P coupling in several coastal wetland types [i.e.

View Article and Find Full Text PDF