Publications by authors named "RuiZhi Xie"

Serratia marcescens, as a Gram-negative opportunistic pathogen, is a rare cause of peritonitis and has worse clinical outcomes than Gram-positive peritonitis. In this case report, we describe a case of Serratia marcescens associated peritonitis that was successfully cured without catheter removal. A 40-year-old male patient with peritoneal dialysis who worked in the catering industry was admitted to the hospital for 16 hours after the discovery of cloudy peritoneal dialysate and abdominal pain.

View Article and Find Full Text PDF

Understanding the water status of specific organs can be helpful in evaluating the life activities and growth conditions of maize. To accurately judge organ growth conditions and thus design appropriate interventions, it is necessary to clarify the true water dynamics of each maize organ. Using multiple maize cultivars with different growth periods, spatio-temporal water dynamics were analyzed here in the leaves, stalks, and ear components.

View Article and Find Full Text PDF
Article Synopsis
  • A Solitary Fibrous Tumor (SFT) is a rare and aggressive type of tumor that can grow back after being removed and can spread to other parts of the body.
  • In this case, a person had an SFT in their brain that was removed in 2008, but it came back and later spread to their pancreas where they had surgery in 2020.
  • The doctors used different treatments together, like surgery and special radiation therapy, to help the patient, who is still alive today and doing well, showing promise for treating similar tumors in the future.
View Article and Find Full Text PDF

Increasing crop yields to ensure food security while also reducing agriculture's environmental impacts to ensure green sustainable development are great challenges for global agriculture. Plastic film, widely used to improve crop yield, also creates plastic film residue pollution and greenhouse gas emissions that restricts the development of sustainable agriculture. So, one of those challenges is to reduce plastic film use while also ensuring food security, and thus promote green and sustainable development.

View Article and Find Full Text PDF

Background: Global warming has led to methods of planting late-maturing maize varieties in northeast China that have hindered the development of physiological maturity (PM) at harvest and the use of mechanical grain harvesting (MGH). Under these conditions it is difficult to balance the drying characteristics of maize varieties and to make full use of accumulated temperature resources in such a way as to reduce grain moisture content (GMC) at harvest.

Results: The effective accumulated temperature (AcT) and the drying rates of different varieties vary.

View Article and Find Full Text PDF

Quantifying the effects of various environmental conditions on maize leaf number is essential to understanding the environmental adaptations and population structure of maize plants and for enhancing maize productivity. In this study, seeds of three temperate-adapted maize cultivars, each belonging to different maturity classes, were sown on eight different dates. Sowing dates ranged from the middle of April to early July, which allowed us to cover a wide range of environmental conditions.

View Article and Find Full Text PDF

Phyllochron, the reciprocal of the leaf appearance rate, is a critical genetic parameter in crop models for predicting growth characteristics and yield. Previous studies have shown that existing observations and predictive algorithms do not adequately represent a broad range of cultivars and environments. Here, we conducted a series of experiments in the field to quantify and disentangle the effects of sowing date and cultivar on maize leaf collar appearance (LCA).

View Article and Find Full Text PDF

Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN) important for radiation-use efficiency versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a 10-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N deficiency (N0), low N supply (N1) and high N supply (N2).

View Article and Find Full Text PDF

While plastic film mulching and proper high-density planting are important methods that can improve maize yield, years of accumulated residual film have created soil pollution and degraded soil, and thus has impeded sustainable agriculture development. Here, we compared the stalk and root lodging resistances of three maize cultivars grown at two planting densities both with (FM) and without (NM) plastic film mulch. Our aim was to provide a theoretical basis that may help assure a future of successful no-film planting with increased planting density.

View Article and Find Full Text PDF

A quantitative understanding of the factors driving changes in grain filling is essential for effective prioritization of increasing maize yield. Grain filling is a significant stage in maize yield formation. Solar radiation is the energy source for grain filling, which is the ultimate driving factor for final grain weight and grain filling capacity that determine maize yield.

View Article and Find Full Text PDF

Solar radiation is the energy source for crop growth, as well as for the processes of accumulation, distribution, and transfer of photosynthetic products that determine maize yield. Therefore, learning the effects of different solar radiation amounts on maize growth is especially important. The present study focused on the quantitative relationships between solar radiation amounts and dry matter accumulations and transfers in maize.

View Article and Find Full Text PDF

Background: The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters evaluate lodging resistance during the later growth stage of maize. Clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field.

View Article and Find Full Text PDF

Marginal superiority is a common phenomenon in crops, and is caused by the competitiveness of individual plant for resources and crop adaptability to crowded growth conditions. In this study, in order to clarify the response of marginal superiority to maize morphology and plant-density tolerance, field experiments without water and nutrition stress were conducted at Qitai Farm in Xinjiang, China, in 2013-2014 and 2016-2019. The results showed that no more than three border rows of all the cultivars had marginal superiority under high density, about 90% of all the cultivars had no more than two border row that had marginal superiority and a significant negative correlation was observed between marginal superiority and population grain yield (first border row: y = - 2.

View Article and Find Full Text PDF

The stability of maize production is essential to global food security. Climate factors, such as temperature, precipitation, and solar radiation, directly affect the development of maize plants and hence the final grain yield. In this study, we investigated the spatial distributions and temporal trends of agro-climatic indices and severe weather indicators during the actual growing season for summer maize in Huanghuaihai region of China.

View Article and Find Full Text PDF

Dual-targeted nanoparticles are gaining increasing importance as a more effective anticancer strategy by attacking double key sites of tumor cells, especially in chemophotodynamic therapy. To retain the nuclei inhibition effect and enhance doxorubicin (DOX)-induced apoptosis by mitochondrial pathways simultaneously, we synthesized the novel nanocarrier (HKH) based on hollow carbon nitride nanosphere (HCNS) modified with hyaluronic acid (HA) and the mitochondrial localizing peptide [KLAKLAK] (KLA). DOX-loaded HKH nanoparticles (HKHDs) showed satisfactory drug-loading efficiency, excellent solubility, and very low hemolytic effect.

View Article and Find Full Text PDF

Background: Treatment multiple tumors by immune therapy can be achieved by mobilizing both innate and adaptive immunity. The programmed death ligand 1 (PD-L1; or CD274, B7-H1) is a critical "don't find me" signal to the adaptive immune system. Equally CD47 is a critical "don't eat me" signal to the innate immune system and a regulator of the adaptive immune response.

View Article and Find Full Text PDF

Carcinoma metastasis is triggered by a subpopulation of circulating tumor cells (CTCs). And single immune checkpoint therapy is not good enough to inhibit CTC-induced metastasis. Here, we demonstrate that simultaneously blocking CD274 (programmed death ligand 1, PD-L1 or B7-H1) and CD47 checkpoints which were respectively signal of "don't find me" and "don't eat me" on CTCs by corresponding antibodies could enhance the inhibition tumor growth than single CD274 or CD47 antibody alone.

View Article and Find Full Text PDF

Matching of maize growth with solar radiation is of great importance for achieving high yield. We conducted experiments using different maize cultivars and planting densities under different solar radiations during grain filling to quantitatively analyze the relationships among these factors. We found that a decrease in solar radiation after silking caused a drop in maize grain yield and biomass, with lower solar radiation intensities leading to worse grain yields and biomass.

View Article and Find Full Text PDF

Metastasis accounts for the majority of cancer-related mortalities, and the complex processes of metastasis remain the least understood aspect of cancer biology. Metabolic reprogramming is associated with cancer cell survival and metastasis in a hostile envi-ronment with a limited nutrient supply, such as solid tumors. Little is known regarding the differences of bioenergetic adaptation between primary tumor cells and metastatic tumor cells in unfavorable microenvironments; to clarify these differences, the present study aimed to compare metabolic reprogramming of primary tumor cells and metastatic tumor cells.

View Article and Find Full Text PDF

To understand the accumulated temperature (ACT) demand of maize for its normal maturation among years and regions as well as the use efficiency of local ACT, a group of work-net field experiments was conducted at 55 sites in 28 regions of Northeast China spring maize planting area (40 degrees 07'-48 degrees 08' N) in 2007-2009, taking an eurychoric maize variety Zhengdan 958 as test object. The meteorological conditions in the area had large difference. In the same regions, the active accumulated temperature above 10 degrees C in whole corn growth season (ACT10 for short) demand of Zhengdan 958 for completing its whole growth and development process had little difference among different years (P > 0.

View Article and Find Full Text PDF

Biomass, leaf area index (LAI) and nitrogen status are important parameters for indicating crop growth potential and photosynthetic productivity in wheat. Nondestructive, quick assessment of leaf dry weight, LAI and nitrogen content is necessary for nitrogen nutrition diagnosis and cultural regulation in wheat production. In order to establish the monitoring model of nitrogen richness in winter wheat of growth anaphase, studying the relationship between the nitrogen richness (NR) containing nitrogen density, LAI and leaf dry weight and the difference of hyperspectral reflectance rates (deltaR), we conducted a comparable experiment with five winter wheat varieties under nitrogen application level of 0, 100, 200 and 400 kg x N x ha(-1).

View Article and Find Full Text PDF