In the real industrial production process, some minor faults are difficult to be detected by multivariate statistical analysis methods with mean and variance as detection indicators due to the aging equipment and catalyst deactivation. With structural characteristics, deep neural networks can better extract data features to detect such faults. However, most deep learning models contain a large number of connection parameters between layers, which causes the training time-consuming and thus makes it difficult to achieve a fast-online response.
View Article and Find Full Text PDF