Publications by authors named "RuiTian Gao"

Computational pathology, utilizing whole slide images (WSIs) for pathological diagnosis, has advanced the development of intelligent healthcare. However, the scarcity of annotated data and histological differences hinder the general application of existing methods. Extensive histopathological data and the robustness of self-supervised models in small-scale data demonstrate promising prospects for developing foundation pathology models.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate treatment response assessment using serial CT scans is crucial for cancer clinical trials, but the current method (RECIST guideline) can be subjective and imprecise, especially for multifocal liver cancer lesions.
  • The newly developed RECORD system utilizes deep learning to objectively evaluate treatment responses, segment liver tumors, and provide classifications based on tumor volume analysis, achieving high accuracy in assessments across multiple studies.
  • RECORD outperforms traditional methods by correlating strongly with clinical evaluations and effectively stratifying patient risks, suggesting a need for future research to apply this technology to other types of cancer.
View Article and Find Full Text PDF

Objectives: To develop a deep learning model combining CT scans and clinical information to predict overall survival in advanced hepatocellular carcinoma (HCC).

Methods: This retrospective study included immunotherapy-treated advanced HCC patients from 52 multi-national in-house centers between 2018 and 2022. A multi-modal prognostic model using baseline and the first follow-up CT images and 7 clinical variables was proposed.

View Article and Find Full Text PDF

Identifying spatially variable genes (SVGs) is crucial for understanding the spatiotemporal characteristics of diseases and tissue structures, posing a distinctive challenge in spatial transcriptomics research. We propose HEARTSVG, a distribution-free, test-based method for fast and accurately identifying spatially variable genes in large-scale spatial transcriptomic data. Extensive simulations demonstrate that HEARTSVG outperforms state-of-the-art methods with higher scores (average Score=0.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) provides insights into the tumor microenvironment (TME), which is closely associated with cancer prognosis, but ST has limited clinical availability. In this study, we provide a powerful deep learning system to augment TME information based on histological images for patients without ST data, thereby empowering precise cancer prognosis. The system provides two connections to bridge existing gaps.

View Article and Find Full Text PDF

The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level.

View Article and Find Full Text PDF

Background: Identifying individuals with mild cognitive impairment (MCI) at risk of progressing to Alzheimer's disease (AD) provides a unique opportunity for early interventions. Therefore, accurate and long-term prediction of the conversion from MCI to AD is desired but, to date, remains challenging. Here, we developed an interpretable deep learning model featuring a novel design that incorporates interaction effects and multimodality to improve the prediction accuracy and horizon for MCI-to-AD progression.

View Article and Find Full Text PDF

Accurately predicting patient survival is essential for cancer treatment decision. However, the prognostic prediction model based on histopathological images of stomach cancer patients is still yet to be developed. We propose a deep learning-based model (MultiDeepCox-SC) that predicts overall survival in patients with stomach cancer by integrating histopathological images, clinical data, and gene expression data.

View Article and Find Full Text PDF

Background: Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are distinct for each type of malignant hepatic tumors. However, the differential diagnosis before surgery is challenging and subjective. This study aims to build an automatic diagnostic model for differentiating malignant hepatic tumors based on patients' multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical features.

View Article and Find Full Text PDF

Motivation: Enhancers are important functional elements in genome sequences. The identification of enhancers is a very challenging task due to the great diversity of enhancer sequences and the flexible localization on genomes. Till now, the interactions between enhancers and genes have not been fully understood yet.

View Article and Find Full Text PDF