Publications by authors named "RuiLu Feng"

Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.

View Article and Find Full Text PDF

Correction for 'Fusogenic peptide modification to enhance gene delivery by peptide-DNA nano-coassemblies' by Ruilu Feng , , 2022, , 5116-5120, https://doi.org/10.1039/D2BM00705C.

View Article and Find Full Text PDF

Endosomal escape is a major obstacle for non-viral nucleic acids delivery. Here, we attached by click reaction a fusogenic peptide (L17E) onto peptide self-assembled disks (∼17 nm), which mimicked the functional subunits of the virus capsid. These peptide disks then spontaneously co-assembled with DNA to form patterned nanostructures (∼100 nm) as viral mimics.

View Article and Find Full Text PDF

Broadening the applicable tools for mRNA delivery provides more flexibility in research and those proven effective and safe can potentially be translated for clinical use. We report here a 27-amino acid peptide sequence mimicking the viral capsid protein, termed pepMAX, capable of co-assembling with mRNA into 100-150 nm nanostructures for efficient transfection of multiple cell lines. The mRNA loading and N/P ratio have been systematically optimized for each cell line.

View Article and Find Full Text PDF

Aromatic residues are widely used as building blocks for driving self-assemblies in natural and designer biomaterials. The noncovalent interactions involving aromatic rings determine proteins' structure and biofunction. Here, we studied the effects of changes in the proximity of the aromatic rings in a self-assembling peptide for modulating interactions involving the aromatic residues.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 (ZIF-8) has received wide attention in recent years as a potential drug vehicle for the treatment of cancer due to its acid-responsiveness and moderate biocompatibility. However, its congenital deficiency of intrinsic imaging capability limits its wider applications; therefore, a postsynthetic exchange approach was utilized to introduce paramagnetic manganese(II) ions into the ZIF-8 matrix. As a result, bimetallic zeolitic imidazolate frameworks (Mn-Zn-ZIF) were thus fabricated and exhibited pH-responsive T1-weighted magnetic resonance imaging (MRI) contrast effect.

View Article and Find Full Text PDF

The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells.

View Article and Find Full Text PDF

Advances in the field of genome engineering demand the development of efficient non-viral transfection agents capable of delivering multiple distinct nucleic acids efficiently to cells (co-transfection). However, current delivery methods result in lower co-transfection efficiency than single plasmid transfections, and the efficiency decreases further with increasing numbers of plasmids. The development of a high-throughput methodology is required for the validation of co-transfection platforms to facilitate independent tracking of not only the multiple DNA plasmids during transfection but also the localisation of transfection agents.

View Article and Find Full Text PDF

Phothermal therapy has received increasing attention in recent years as a potentially effective way to treat cancer. In pursuit of a more biocompatible photothermal agent, we utilize biosafe materials including ellagic acid (EA), polyvinylpyrrolidone (PVP), and iron element as building blocks, and we successfully fabricate a homogeneous nanosized Fe-EA framework for the first time by a facile method. As expected, the novel nanoagent exhibits no obvious cytotoxicity and good hemocompatibility in vitro and in vivo.

View Article and Find Full Text PDF

The catalytic performance of Pd-based catalysts has long been hindered by surface contamination, particle agglomeration, and lack of rational structural design. Here we report a simple adsorption method for rapid synthesis (∼90 s) of structure-optimized Pd alloy supported on nitrogen-doped carbon without the use of surfactants or extra reducing agents. The material shows much lower overpotential than 30 wt % Pd/C and 40 wt % Pt/C catalysts while exhibiting excellent durability (80 h).

View Article and Find Full Text PDF