Publications by authors named "RuiAi Chen"

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

Introduction: Senecavirus A (SVA), belonging to the genus in the family , is an emerging pathogen causing vesicular disease in pigs. The main clinical manifestations of SVA infection include high mortality in neonatal piglets, skin ulceration, and vesicular lesions. So far, there is no commercially available vaccines or drugs against SVA.

View Article and Find Full Text PDF

Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages.

View Article and Find Full Text PDF

In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation.

View Article and Find Full Text PDF

Local drug delivery has generated considerable interest due to its controlled and sustained drug release at the target site on demand. Nanoaggregate-incorporated composite hydrogels are desirable as local drug delivery systems; however, it is difficult to achieve sustained and controlled hydrophobic drug release and superior mechanical properties in one system. Herein, a "smart" composite hydrogel was synthesized by incorporating hemicellulose-based nanoaggregates into a double network consisting of alginate/Ca and polyacrylic acid-co-dimethylaminoethyl methacrylate [P(AA-co-DMAEMA)].

View Article and Find Full Text PDF

Introduction: Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms.

Methods: The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle.

View Article and Find Full Text PDF

Newcastle disease (ND) and infectious bursal disease (IBD) are two key infectious diseases that significantly threaten the health of the poultry industry. Although existing vaccinations can effectively prevent and treat these two diseases through multiple immunizations, frequent immunization stresses significantly impact chicken growth. In this study, three recombinant adenoviruses, rAd5-F expressing the NDV (genotype VII) F protein, rAd5-VP2 expressing the IBDV VP2 protein, and rAd5-VP2-F2A-F co-expressing F and VP2 proteins, were constructed using the AdEasy system.

View Article and Find Full Text PDF

We determined the prevalence and molecular characteristics of -positive () isolated from duck-fish polyculture farms in Guangzhou, China. A total of 914 strains were isolated from 2008 duck and environmental samples (water, soil and plants) collected from four duck fish polyculture farms between 2017 and 2019. Among them, 196 strains were CTX-M-1G-positive strains by PCR, and 177 (90%) -producing strains were -positive.

View Article and Find Full Text PDF

African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by the lack of an in-depth, mechanistic understanding of the host immune response to ASFV infection and the induction of protective immunity. In this study, we report that immunization of pigs with Semliki Forest Virus (SFV) replicon-based vaccine candidates expressing ASFV p30, p54, and CD2v, as well as their ubiquitin-fused derivatives, elicits T cell differentiation and expansion, promoting specific T cell and humoral immunity.

View Article and Find Full Text PDF

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients.

View Article and Find Full Text PDF

Porcine enteric coronaviruses are pathogens that cause viral diarrhea in pigs and are widely prevalent worldwide. Moreover, studies have shown that some porcine enteric coronaviruses can infect humans and poultry. In order to effectively monitor these viruses, it is necessary to establish a multiple detection method to understand their prevalence and conduct in-depth research.

View Article and Find Full Text PDF

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis.

View Article and Find Full Text PDF

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3.

View Article and Find Full Text PDF

Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. A diversity of serotypes and genotypes of IBV have been identified worldwide, and the currently available vaccines do not cross-protect. In the present study, an efficient reverse genetics technology based on Beaudette-p65 has been used to construct a recombinant IBV, rIBV-Beaudette-KC(S1), by replacing the nucleotides 21,704-22,411 with the corresponding sequence from an isolate of QX-like genotype KC strain.

View Article and Find Full Text PDF
Article Synopsis
  • Avian interferon regulatory factors IRF1 and IRF7 are crucial for the immune response against viral infections, specifically duck tembusu virus (DTMUV).
  • Infections lead to increased expression of several interferon-stimulated genes (ISGs), with IRF1 significantly regulating the up-expression of genes like VIPERIN and inhibiting DTMUV replication.
  • The study also reveals that DTMUV's non-structural protein NS2B can suppress the immune signaling response, highlighting the virus's strategies to avoid detection by the host's immune system.
View Article and Find Full Text PDF

Current commercial H9 avian influenza viruses (AIVs) vaccines cannot provide satisfactory antibody titers and protective immunity against AIVs in duck. Toll like receptors (TLR) ligand as AIVs adjuvants can activate dendritic cells to improve immune responses in multiple animals, while the studies were absent in duck. Therefore, we investigated TLR ligands pam2CSK4, poly (I:C) and/or imiquimod enhance immune responses to inactivated H9N2 avian influenza antigen (H9N2 IAIV) in peripheral blood monocyte-derived dendritic cells (MoDCs) and duck.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family that damages the immune system of pigs, resulting in the death or slaughter of millions of animals worldwide. Recent modern techniques in ASFV vaccination have highlighted the potential of viral replicon particles (RPs), which can efficiently express foreign proteins and induce robust cellular and humoral immune responses compared with the existing vaccines. In this study, we established a Semliki Forest virus (SFV) vector by producing replication-defective viral particles.

View Article and Find Full Text PDF

From 2003 onwards, three pandemics have been caused by coronaviruses: severe acute respiratory syndrome coronavirus (SARS-CoV); middle east respiratory syndrome coronavirus (MERS-CoV); and, most recently, SARS-CoV-2. Notably, all three were transmitted from animals to humans. This would suggest that animals are potential sources of epidemics for humans.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. A convenient small mammalian model for basic research and antiviral testing is still greatly needed. Although a small rodent, the Mongolian gerbil, was reported to be susceptible to swine genotype-4 HEV infection, whether the previous results were reliable and consistent needs to be validated by using biologically pure HEV stocks or infectious RNA.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is an important oncogenic poultry pathogen that can generally be controlled by vaccination. However, MDV infections still occur occasionally on vaccinated farms, possibly due to genetic variation among MDV strains or management-related issues. In this study, a novel MDV strain, designated LZ1309, was isolated from a poultry flock that had been vaccinated with the HVT and CVI988 vaccine strains.

View Article and Find Full Text PDF

Determination of the mechanisms of interspecies transmission is of great significance for the prevention of epidemic diseases caused by emerging coronaviruses (CoVs). Recently, porcine deltacoronavirus (PDCoV) was shown to exhibit broad host cell range mediated by surface expression of aminopeptidase N (APN), and humans have been reported to be at risk of PDCoV infection. In the present study, we first demonstrated overexpression of APN orthologues from various species, including mice and felines, in the APN-deficient swine small intestine epithelial cells permitted PDCoV infection, confirming that APN broadly facilitates PDCoV cellular entry and perhaps subsequent interspecies transmission.

View Article and Find Full Text PDF
Article Synopsis
  • A new, cost-effective immunoassay called NLICS has been developed for quickly detecting SARS-CoV-2 antigens in human blood, enhancing early infection identification and pandemic control.
  • The system combines a disposable chromatographic strip with a smartphone-based optical sensor, allowing results to be read in just 25 minutes and transmitted via Bluetooth.
  • NLICS showed high sensitivity with a detection limit of 0.026 ng/mL and 100% specificity in clinical tests, proving to be a reliable tool for early diagnosis of COVID-19 infections.
View Article and Find Full Text PDF

The annually recurrent seasonal influenza viruses, namely, influenza A viruses (H1N1/pdm2009 and H3N2) and influenza B viruses, contribute substantially to human disease burden. Elucidation of host adaptation, population dynamics and evolutionary patterns of these viruses contribute to better control of current epidemic situation and bolster efforts towards pandemic preparedness. Present study has been addressed at unraveling the signatures of codon usage and dinucleotide distribution of these seasonal influenza viruses associating with their fitness and ongoing adaptive evolution in human population.

View Article and Find Full Text PDF